About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 918497, 15 pages
http://dx.doi.org/10.1155/2012/918497
Research Article

Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2TAMS Group, Department of Informatics, University of Hamburg, Vogt-Koelln-Straße 30, 22527 Hamburg, Germany
3Department of Mathematics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy

Received 17 February 2012; Accepted 28 March 2012

Academic Editor: Carlo Cattani

Copyright © 2012 Xin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Farenc, S. R. Musse, E. Schweiss et al., “A paradigm for controlling virtual humans in urban environment simulations,” Applied Artificial Intelligence, vol. 14, no. 1, pp. 69–91, 2000. View at Scopus
  2. F. Tecchia, C. Loscos, R. Conroy, et al., “Agent Behavior Simulator (ABS): a platform for urban behavior development,” in Proceedings of Games Technology Conference, 2001.
  3. M. Shao, X. Wang, and Y. Hou, “Crowd evacuation simulation based on a hierarchy environmental model,” in Proceedings of the IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design: E-Business, Creative Design, Manufacturing (CAID & CD '09), pp. 1075–1078, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Chen, Y. Wang, and C. Cattani, “Key issues in modeling of complex 3D structures from video sequences,” Mathematical Problems in Engineering, vol. 2012, Article ID 856523, 17 pages, 2012. View at Publisher · View at Google Scholar
  5. M. Denny, “Solving geometric optimization problems using graphics hardware,” Computer Graphics Forum, vol. 22, no. 3, pp. 441–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Chen and Z. Wang, “Acceleration strategies in generalized belief propagation,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 41–48, 2012. View at Publisher · View at Google Scholar
  7. S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Publisher · View at Google Scholar
  8. C. W. Reynolds, “A distributed behavioral model,” in Proceedings of the ACM Computer Graphics (SIGGRAPH ’87), M. C. Stone, Ed., pp. 25–34, 1987. View at Scopus
  9. C. W. Reynolds, Steering Behaviors for Autonomous Characters, Sony Computer Entertainment America, Boulevard Foster City, Calif, USA, 1999.
  10. M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012. View at Publisher · View at Google Scholar
  11. M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” in Proceedings of the ACM Transactions on Graphics (ACM SIGGRAPH '02), pp. 473–482, July 2002. View at Scopus
  13. O. Arikan and D. A. Forsyth, “Interactive motion generation from examples,” in Proceedings of the ACM Transactions on Graphics (ACM SIGGRAPH '02), pp. 483–490, July 2002. View at Scopus
  14. J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard, “Interactive control of avatars animated with human motion data,” in Proceedings of the ACM Transactions on Graphics (ACM SIGGRAPH '02), pp. 491–500, July 2002. View at Scopus
  15. S. Y. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in Engineering, vol. 2012, Article ID 814356, 18 pages, 2012. View at Publisher · View at Google Scholar
  16. P. S. A. Reitsma and N. S. Pollard, “Evaluating motion graphs for character navigation,” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 89–98, Grenoble, France, 2004.
  17. J. Lee and K. H. Lee, “Precomputing avatar behavior from human motion data,” Graphical Models, vol. 68, no. 2, pp. 158–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Lau and J. J. Kuffner, “Behavior planning for character animation,” in Proceedings of the 5th Eurographics Symposium on Computer Animation (ACM SIGGRAPH '05), pp. 271–280, Los Angeles, Calif, USA, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Lavalle, Planning Algorithms, Cambridge University Press, Cambridge, Mass, USA, 2006.
  20. S. Chen, J. Zhang, Y. Li, and J. Zhang, “A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 118–127, 2012. View at Publisher · View at Google Scholar
  21. A. R. Da Silva, W. S. Lages, and L. Chaimowicz, “Improving boids algorithm in GPU using estimated self occlusion,” in Proceedings of SBGames'08: Computing Track, Computers in Entertainment (CIE), pp. 41–46, 2008.