About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 937196, 17 pages
http://dx.doi.org/10.1155/2012/937196
Research Article

A Fault Prognosis Strategy Based on Time-Delayed Digraph Model and Principal Component Analysis

1College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
3Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Received 30 August 2012; Accepted 15 November 2012

Academic Editor: Huaguang Zhang

Copyright © 2012 Ningyun Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, and B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, John Wiley & Sons, 2006.
  2. B. Jiang and F. N. Chowdhury, “Fault estimation and accommodation for linear MIMO discrete-time systems,” IEEE Transactions on Control Systems Technology, vol. 13, no. 3, pp. 493–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 9, pp. 1578–1583, 2006. View at Publisher · View at Google Scholar
  4. M. A. Schwabacher, “A survey of data-driven prognostics,” in Proceedings of InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, pp. 887–891, September 2005. View at Scopus
  5. M. Schwabacher and K. Goebel, “A survey of artificial intelligence for prognostics,” in Proceedings of AAAI Fall Symposium on Artificial Intelligence for Prognostics, pp. 107–114, Arlington, Va, USA, November 2007. View at Scopus
  6. J. Arnhold, P. Grassberger, K. Lehnertz, and C. E. Elger, “A robust method for detecting interdependences: application to intracranially recorded EEG,” Physica D, vol. 134, no. 4, pp. 419–430, 1999. View at Scopus
  7. B. S. Caldwell, “Knowledge sharing and expertise coordination of event response in organizations,” Applied Ergonomics, vol. 39, no. 4, pp. 427–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, “Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble,” Physical Review E, vol. 54, no. 6, pp. 6708–6724, 1996. View at Scopus
  9. J. Y. Wang, Z. J. Shao, P. Ji, K. T. Yao, and Z. Q. Chen, “Online diagnosis of abnormal conditions of air separation process by dynamic PCA,” Computers and Applied Chemistry, vol. 27, no. 1, pp. 1–5, 2010.
  10. J. Pearl, Causality: Models, Reasoning and Inference, Cambridge University Press, New York, NY, USA, 2000.
  11. C. W. J. Granger, “Investigating causal relations by econometric and cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, 1969.
  12. C. W. J. Granger, “Testing for causality: a personal viewpoint,” Journal of Economic Dynamics & Control, vol. 2, no. 4, pp. 329–352, 1980. View at Publisher · View at Google Scholar
  13. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, “Causality detection based on information-theoretic approaches in time series analysis,” Physics Reports, vol. 441, no. 1, pp. 1–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Schreiber, “Measuring information transfer,” Physical Review Letters, vol. 85, no. 2, pp. 461–464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Paluš, V. Komárek, Z. Hrnčíř, and K. Štěrbová, “Synchronization as adjustment of information rates: detection from bivariate time series,” Physical Review E, vol. 63, no. 4, pp. 462111–462116, 2001.
  16. J. Jeong, J. C. Gore, and B. S. Peterson, “Mutual information analysis of the EEG in patients with Alzheimer's disease,” Clinical Neurophysiology, vol. 112, no. 5, pp. 827–835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Na, S. H. Jin, S. Y. Kim, and B. J. Ham, “EEG in schizophrenic patients: mutual information analysis,” Clinical Neurophysiology, vol. 113, no. 12, pp. 1954–1960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Bauer and N. F. Thornhill, “A practical method for identifying the propagation path of plant-wide disturbances,” Journal of Process Control, vol. 18, no. 7-8, pp. 707–719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. T. Tran, B. S. Yang, and A. C. C. Tan, “Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems,” Expert Systems with Applications, vol. 36, no. 5, pp. 9378–9387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Physical Review A, vol. 33, no. 2, pp. 1134–1140, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. S. H. Jin, P. Lin, and M. Hallett, “Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction,” Clinical Neurophysiology, vol. 121, no. 3, pp. 392–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F. Thornhill, “Finding the direction of disturbance propagation in a chemical process using transfer entropy,” IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 12–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. F. Thornhill, J. W. Cox, and M. A. Paulonis, “Diagnosis of plant-wide oscillation through data-driven analysis and process understanding,” Control Engineering Practice, vol. 11, no. 12, pp. 1481–1490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. L. Ho and M. Xie, “The use of ARIMA models for reliability forecasting and analysis,” Computers and Industrial Engineering, vol. 35, no. 1–4, pp. 213–216, 1998. View at Scopus
  25. L. Datong, P. Yu, and P. Xiyuan, “Fault prediction based on time series with online combined kernel SVR methods,” in Proceedings of IEEE Intrumentation and Measurement Technology Conference (I2MTC '09), pp. 1163–1166, Singapore, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. K. Yang, “An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor,” Reliability Engineering and System Safety, vol. 75, no. 1, pp. 103–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Rietman and M. Beachy, “A study on failure prediction in a plasma reactor,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 4, pp. 670–680, 1998. View at Scopus
  28. R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society B, vol. 58, no. 1, pp. 267–288, 1996. View at Zentralblatt MATH
  29. S. Ben Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition,” Expert Systems with Applications, vol. 39, no. 8, pp. 7067–7083, 2012. View at Publisher · View at Google Scholar
  30. N. Lu, F. Gao, Y. Yang, and F. Wang, “PCA-based modeling and on-line monitoring strategy for uneven-length batch processes,” Industrial and Engineering Chemistry Research, vol. 43, no. 13, pp. 3343–3352, 2004. View at Scopus
  31. L. Zhu, Z. Chen, X. Chen, Z. Shao, and J. Qian, “Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method,” Separation and Purification Technology, vol. 67, no. 3, pp. 262–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Xu, J. Zhao, X. Chen et al., “Automatic load change system of cryogenic air separation process,” Separation and Purification Technology, vol. 81, no. 3, pp. 451–465, 2011. View at Publisher · View at Google Scholar