About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 940276, 18 pages
http://dx.doi.org/10.1155/2012/940276
Research Article

Chaotic Trajectory Design for Monitoring an Arbitrary Number of Specified Locations Using Points of Interest

Automation and Applied Informatics Department, “Politehnica” University of Timisoara, Building V. Parvan No. 2, 300223 Timisoara, Romania

Received 10 November 2012; Revised 3 December 2012; Accepted 4 December 2012

Academic Editor: Wang Xing-yuan

Copyright © 2012 Daniel-Ioan Curiac and Constantin Volosencu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Palacín, J. A. Salse, I. Valganón, and X. Clua, “Building a mobile robot for a floor-cleaning operation in domestic environments,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp. 1418–1424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Hedberg, “Robots cleaning up hazardous waste,” AI Expert, vol. 10, no. 5, pp. 20–24, 1995.
  3. J. D. Setiawan, M. Subchan, and A. Budiyono, “Virtual reality simulation of fire fighting robot dynamic and motion,” in Intelligent Unmanned Systems: Theory and Applications, Studies in Computational Intelligence, Springer, Heidelberg, Germany, 2009. View at Publisher · View at Google Scholar
  4. R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar, “Performance evaluation of chaotic and conventional encryption on portable and mobile platforms,” Chaos-Based Cryptography, vol. 354, pp. 375–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Liu, X. Y. Wang, and A. Kadir, “Image encryption using DNA complementary rule and chaotic maps,” Applied Soft Computing, vol. 12, no. 5, pp. 1457–1466, 2012.
  6. W. Xingyuan, Q. Xue, and T. Lin, “A novel true random number generator based on mouse movement and a one-dimensional chaotic map,” Mathematical Problems in Engineering, vol. 2012, Article ID 931802, 9 pages, 2012. View at Publisher · View at Google Scholar
  7. X. Y. Wang and X. Qin, “A new pseudo-random number generator based on CML and chaotic iteration,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1589–1592, 2012.
  8. C. A. Brackley, O. Ebenhöh, C. Grebogi et al., “Introduction to focus issue: dynamics in systems biology,” Chaos, vol. 20, no. 4, Article ID 045101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Hasselblatt and A. Katok, A First Course in Dynamics: with a Panorama of Recent Developments, Cambridge University Press, New York, NY, USA, 2003.
  10. J. He, H. Qian, Y. Zhou, and Z. Li, “Cryptanalysis and improvement of a block cipher based on multiple chaotic systems,” Mathematical Problems in Engineering, vol. 2010, Article ID 590590, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. Y. Nakamura and A. Sekiguchi, “Chaotic mobile robot,” IEEE Transaction on Robotics and Automation, vol. 17, no. 6, pp. 898–904, 2001.
  12. A. Sekiguchi and Y. Nakamura, “The chaotic mobile robot,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '99), vol. 1, pp. 172–178, 1999.
  13. L. Martins-Filho, E. Macau, R. Rocha, R. Machado, and L. Hirano, “Kinematic control of mobile robots to produce chaotic trajectories,” ABCM Symposium Series in Mechatronics, vol. 2, pp. 258–264, 2006.
  14. L. S. Martins-Filho and E. E. N. Macau, “Patrol mobile robots and chaotic trajectories,” Mathematical Problems in Engineering, vol. 2007, Article ID 61543, 13 pages, 2007. View at Publisher · View at Google Scholar
  15. A. Jansri, K. Klomkarn, and P. Sooraksa, “On comparison of attractors for chaotic mobile robots,” in Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society (IECON '04), pp. 2536–2541, November 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Sooraska and K. Klomkarn, “No-CPU chaotic robots: from classroom to commerce,” IEEE Circuits and Systems Magazine, vol. 10, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. K. Volos, I. M. Kyprianidis, and I. N. Stouboulos, “A chaotic path planning generator for autonomous mobile robots,” Robotics and Autonomous Systems, vol. 60, no. 4, pp. 651–656, 2012.
  18. Y. Bae, “Target searching method in the chaotic mobile robot,” in Proceedings of the 23rd IEEE Digital Avionics Systems Conference (DASC ’04), vol. 2, pp. 12.D.7–112.19, Salt Lake City, Utah, USA, October 2004.
  19. D. I. Curiac and C. Volosencu, “Developing 2D trajectories for monitoring an area with two points of interest,” in Proceedings of the 10th World Scientific and Engineering Academy and Society International Conference on Automation and Information (ICAI '09), pp. 366–369, 2009.
  20. Z. Liu, “Chaotic time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 720190, 31 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. T. Lin and X. Y. Wang, “A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive,” Optics Communications, vol. 285, no. 20, pp. 4048–4054, 2012.
  22. S. H. Kellert, In the Wake of Chaos: Unpredictable Order in Dynamical Systems, University of Chicago Press, Chicago, Ill, USA, 1993.
  23. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130–141, 1963.
  24. G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465–1466, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. A. Vanecek and S. Celikovsky, Control Systems: From Linear Analysis to Synthesis of Chaos, Prentice-Hall, London, UK, 1996.
  26. S. Čelikovský and G. Chen, “On a generalized Lorenz canonical form of chaotic systems,” International Journal of Bifurcation and Chaos, vol. 12, no. 8, pp. 1789–1812, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos, vol. 12, no. 3, pp. 659–661, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. T. Ueta and G. Chen, “Bifurcation analysis of Chen’s attractor,” International Journal of Bifurcation and Chaos, vol. 10, no. 8, pp. 1917–1931, 2000. View at Zentralblatt MATH
  29. J. Lü, T. Zhou, G. Chen, and S. Zhang, “The compound structure of Chen's attractor,” International Journal of Bifurcation and Chaos, vol. 12, no. 4, pp. 855–858, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. A. B. Orue, G. Alvarez, G. Pastor, M. Romera, F. Montoya, and S. Li, “A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3471–3483, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. V. J. Lumelsky and T. Skewis, “Incorporating range sensing in the robot navigation function,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 1058–1068, 1990. View at Scopus
  32. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Borenstein and Y. Koren, “The vector field histogram—fast obstacle avoidance for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 802–807, May 1993. View at Scopus
  35. E. Bicho and G. Schöner, “The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform,” Robotics and Autonomous Systems, vol. 21, no. 1, pp. 23–35, 1997. View at Scopus
  36. D. I. Curiae, D. Iercan, O. Dranga, F. Dragan, and O. Banias, “Chaos-based cryptography: end of the road?” in Proceedings of the International Conference on Emerging Security Information, Systems, and Technologies (SECURWARE '07), pp. 71–76, Valencia, Spain, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Wang and L. Teng, “An image blocks encryption algorithm based on spatiotemporal chaos,” Nonlinear Dynamics, vol. 67, no. 1, pp. 365–371, 2012. View at Publisher · View at Google Scholar
  38. S. Li, G. Chen, and X. Mou, “On the dynamical degradation of digital piecewise linear chaotic maps,” International Journal of Bifurcation and Chaos, vol. 15, no. 10, pp. 3119–3151, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  39. S. Li, X. Mou, Y. Cai, Z. Ji, and J. Zhang, “On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision,” Computer Physics Communications, vol. 153, no. 1, pp. 52–58, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  40. X. Y. Wang and Y. X. Xie, “A design of pseudo-random bit generator based on single chaotic system,” International Journal of Modern Physics C, vol. 23, no. 3, Article ID 1250024, 2012.
  41. D. D. Wheeler and R. A. J. Matthews, “Supercomputer investigations of a chaotic encryption algorithm,” Cryptologia, vol. 15, no. 2, pp. 140–151, 1991.
  42. G. Heidari-bateni and C. D. McGillem, “Chaotic direct-sequence spread-spectrum communication system,” IEEE Transactions on Communications, vol. 42, no. 234, pp. 1524–1527, 1994. View at Scopus
  43. T. Sang, R. Wang, and Y. Yan, “Perturbance-based algorithm to expand cycle length of chaotic key stream,” Electronics Letters, vol. 34, no. 9, pp. 873–874, 1998. View at Scopus
  44. H. Liu and X. Y. Wang, “Color image encryption using spatial bit-level permutation and high-dimension chaotic system,” Optics Communications, vol. 284, no. 16-17, pp. 3895–3903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Wu and Z. Wang, “An auto-switched chaos system,” Procedia Engineering, vol. 24, pp. 464–469, 2011.
  46. Y. Wang, X. Liao, T. Xiang, K. W. Wong, and D. Yang, “Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map,” Physics Letters A, vol. 363, no. 4, pp. 277–281, 2007. View at Publisher · View at Google Scholar · View at Scopus