About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 947961, 25 pages
http://dx.doi.org/10.1155/2012/947961
Research Article

On the Complexities of the Design of Water Distribution Networks

1FluIng-IMM, Universitat Politècnica de València, Camino Vera s/n, 46022 Valencia, Spain
23S Consult Büro Karlsruhe, Albtalstrasse 13D, 76137 Karlsruhe, Germany
3Universidad de Extremadura, Avda. Universidad, s/n, 10071 Cáceres, Spain

Received 10 July 2011; Accepted 13 September 2011

Academic Editor: Zidong Wang

Copyright © 2012 Joaquín Izquierdo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Izquierdo and R. Pérez-García, Eds., Applications of Intelligent Data Analysis in Urban Supply Systems, Universitat Politècnica de València, Valencia, Spain, 2011.
  2. I. C. Goulter and A. V. Colas, “Quantitative approaches to reliability assessment in pipe networks,” Journal of Transportation Engineering, vol. 112, no. 3, pp. 287–301, 1986. View at Publisher · View at Google Scholar
  3. I. C. Goulter and F. Bouchart, “Reliability-constrained pipe network model,” Journal of Hydraulic Engineering—ASCE, vol. 116, no. 2, pp. 211–229, 1990. View at Publisher · View at Google Scholar
  4. T. M. Walski, Ed., Advanced Water Distribution Modeling and Management, Haestad Press, Waterbury, Conn, USA, 2003.
  5. I. Montalvo, Diseño óptimo de sistemas de distribución de agua mediante agent swarm optimization, Ph.D. thesis, Universitad Politècnica de València, Valencia, Spain, 2011.
  6. Y. Kleiner, B. J. Adams, and J. S. Rogers, “Water distribution network renewal planning,” Journal of Computing in Civil Engineering, vol. 15, no. 1, pp. 15–26, 2001. View at Publisher · View at Google Scholar
  7. A. S. Matías, Diseño de redes de distribución de agua contemplando la fiabilidad, mediante algoritmos genéticos, Ph.D. thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2003.
  8. G. C. Dandy and M. O. Engelhardt, “Multi-objective trade-offs between cost and reliability in the replacement of water mains,” Journal of Water Resources Planning and Management, vol. 132, no. 2, pp. 79–88, 2006. View at Publisher · View at Google Scholar
  9. J. Izquierdo, R. Pérez, and P. L. Iglesias, “Mathematical models and methods in the water industry,” Mathematical and Computer Modelling, vol. 39, no. 11-12, pp. 1353–1374, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. L. A. Rossman, EPANET 2 User's Manual, Environmental Protection Agency, Cincinati, Ind, USA, 2000.
  11. C. Xu and I. C. Goulter, “Simulation-based optimal design of reliable water distribution networks,” in Proceedings of the 3rd International Conference on Modeling and Simulation, Victoria University of Technology, Melbourne, Australia, 1997.
  12. Z. Y. Wu, R. H. Wang, T. Walski, S. Y. Yang, D. Bowdler, and C. C. Baggett, “Eficient pressure dependent demand model for large water distribution system analysis,” in Proceedings of the 8th Annual Water Distribution System Analysis Symposium, Cincinnati, Ohio, USA, 2006.
  13. O. Giustolisi, D. Savic, and Z. Kapelan, “Pressure-driven demand and leakage simulation for water distribution networks,” Journal of Hydraulic Engineering—ASCE, vol. 134, no. 5, pp. 626–635, 2008. View at Publisher · View at Google Scholar
  14. I. Montalvo, J. Izquierdo, R. Pérez, and M. M. Tung, “Particle swarm optimization applied to the design of water supply systems,” Computers & Mathematics with Applications, vol. 56, no. 3, pp. 769–776, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. I. Montalvo, J. Izquierdo, R. Pérez, and P. L. Iglesias, “A diversity-enriched variant of discrete PSO applied to the design of water distribution networks,” Engineering Optimization, vol. 40, no. 7, pp. 655–668, 2008. View at Publisher · View at Google Scholar
  16. I. Montalvo, J. Izquierdo, R. Pérez, and M. Herrera, “Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems,” Engineering Applications of Artificial Intelligence, vol. 23, no. 5, pp. 727–735, 2010. View at Publisher · View at Google Scholar
  17. J. B. Martínez, “Cost and reliability comparison between branched and looped water supply networks,” Journal of Hydroinformatics—IWA, vol. 12, no. 2, pp. 150–160, 2010. View at Publisher · View at Google Scholar
  18. I. C. Goulter, “Systems analysis in water-distribution network design: from theory to practice,” Journal of Water Resources Planning and Management—ASCE, vol. 118, no. 3, pp. 238–248, 1992.
  19. H. Park and J. Liebman, “Redundancy-constrained minimum-cost design of water-distribution nets,” Journal of Water Resources Planning and Management—ASCE, vol. 119, no. 1, pp. 83–98, 1993.
  20. D. Khomsi, G. A. Walters, A. R. D. Thorley, and D. Ouazar, “Reliability tester for water-distribution networks,” Journal of Computing in Civil Engineering—ASCE, vol. 10, no. 1, pp. 10–19, 1996.
  21. I. C. Goulter, T. M. Walski, L. W. Mays, A. B. A. Sekarya, R. Bouchart, and Y. K. Tung, “Reliability analysis for design,” in Water Distribution Systems Handbook, L. W. Mays, Ed., McGraw-Hill, New York, NY, USA, 2000.
  22. T. T. Tanyimboh, M. Tabesh, and R. Burrows, “Appraisal of source head methods for calculating reliability of water distribution networks,” Journal of Water Resources Planning and Management—ASCE, vol. 127, no. 4, pp. 206–213, 2001. View at Publisher · View at Google Scholar
  23. P. Kalungi and T. T. Tanyimboh, “Redundancy model for water distribution systems,” Reliability Engineering and System Safety, vol. 82, no. 3, pp. 275–286, 2003. View at Publisher · View at Google Scholar
  24. D. R. Morgan and I. C. Goulter, “Optimal urban water distribution design,” Water Resources Research, vol. 21, no. 5, pp. 642–652, 1985.
  25. G. A. Walters and J. Knezevic, “Discussion of “Reliability based optimization model for water distribution systems” by Su, Y., Mays, L. W., Duan, N., and Lansey, K.,” Journal of Hydralic Engineering—ASCE, vol. 115, no. 8, pp. 1157–1158, 1989. View at Publisher · View at Google Scholar
  26. G. V. Loganathan, M. P. Shah, and H. P. Sherali, “A two-phase network design heuristic for minimum cost water distribution systems under a reliability constraint,” Engineering Optimization, vol. 15, no. 4, pp. 311–336, 1990. View at Publisher · View at Google Scholar
  27. F. Bouchart and I. Goulter, “Reliability improvements in design of water distribution networks recognizing valve location,” Water Resources Research, vol. 27, no. 12, pp. 3029–3040, 1991. View at Publisher · View at Google Scholar
  28. R. Gupta and R. Bhave, “Reliability analysis of water-distribution systems,” Journal of Environmental Engineering, vol. 120, no. 2, pp. 447–460, 1994.
  29. C. Xu and I. C. Goulter, “Reliability-based optimal design of water distribution networks,” Journal of Water Resources Planning and Management—ASCE, vol. 125, no. 6, pp. 352–362, 1999. View at Publisher · View at Google Scholar
  30. Y. Su, L. W. Mays, N. Duan, and K. E. Lansey, “Reliability based optimization model for water distribution systems,” Journal of Hydraulic Engineering—ASCE, vol. 113, no. 12, pp. 1539–1556, 1987.
  31. M. J. Cullinane, K. E. Lansey, and L. W. Mays, “Optimization-availability-based design of water-distribution networks,” Journal of Hydraulic Engineering—ASCE, vol. 118, no. 3, pp. 420–441, 1992.
  32. V. Pareto, Cours d'Economie Politique, Université de Lausanne, Lausanne, Switzerland, 1896.
  33. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Boston, Mass, USA, 1989.
  34. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, NY, USA, 2001.
  35. D. A. Savic, “Single-objective vs. multiobjective optimisation for integrated decision support integrated assessment and decision support,” in Proceedings of the 1st Biennial Meeting of the International Environmental Modeling and Software Society, A. E. Rizzoli and A. J. Jakeman, Eds., vol. 1, pp. 7–12, University of Lugano, Lugano, Switzerland, 2002.
  36. L. S. Vamvakeridou-Lyroudia, G. A. Walters, and D. A. Savic, “Fuzzy multiobjective optimization of water distribution networks,” Journal of Water Resources Planning and Management—ASCE, vol. 131, no. 6, pp. 467–476, 2005. View at Publisher · View at Google Scholar
  37. G. C. Dandy and M. O. Engelhardt, “Multi-objective trade-offs between cost and reliability in the replacement of water mains,” Journal of Water Resources Planning and Management—ASCE, vol. 132, no. 2, pp. 79–88, 2006. View at Publisher · View at Google Scholar
  38. I. Montalvo, J. Izquierdo, S. Schwarze, and R. Pérez-García, “Multi-objective particle swarm optimization applied to water distribution systems design: an approach with human interaction,” Mathematical and Computer Modelling, vol. 52, no. 7-8, pp. 1219–1227, 2010. View at Publisher · View at Google Scholar
  39. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, Piscataway, NJ, USA, 1995.
  40. J. Izquierdo, I. Montalvo, R. Pérez, and V. S. Fuertes, “Design optimization of wastewater collection networks by PSO,” Computers & Mathematics with Applications, vol. 56, no. 3, pp. 777–784, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  41. M. Herrera, J. Izquierdo, I. Montalvo, and R. Pérez-García, “Injecting diversity into particle swarm optimization. Application to water distribution system design,” Advances in Computer Science and Engineering, vol. 6, no. 2, pp. 159–179, 2011.
  42. Y. F. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73, Anchorage, Alaska, USA, 1998.
  43. C. A. C. Coello, G. B. Lamont, and D. A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, NY, USA, 2007.
  44. Y. Dong, J. Tang, B. Xu, and D. Wang, “An application of swarm optimization to nonlinear programming,” Computers & Mathematics with Applications, vol. 49, no. 11-12, pp. 1655–1668, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. P. J. Angeline, “Using selection to improve particle swarm optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 84–89, Anchorage, Alaska, USA, 1998.
  46. M. Løvbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimiser with breeding and subpopulations,” in Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, Calif, USA, 2001.
  47. K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis, “Stretching technique for obtaining global minimizers through particle swarm optimization,” in Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, Ind, USA, 2001.
  48. Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, 1999.
  49. Y. X. Jin, H. Z. Cheng, J. I. Yan, and L. Zhang, “New discrete method for particle swarm optimization and its application in transmission network expansion planning,” Electric Power Systems Research, vol. 77, no. 3-4, pp. 227–233, 2007. View at Publisher · View at Google Scholar
  50. M. S. Arumugam and M. V. C. Rao, “On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems,” Applied Soft Computing, vol. 8, no. 8, pp. 324–336, 2008. View at Publisher · View at Google Scholar
  51. J. Izquierdo, R. Minciardi, I. Montalvo, M. Robba, and M. Tavera, “Particle Swarm Optimization for the biomass supply chain strategic planning,” in Proceedings of the 4th Biennal Meeting, iEMSs 2008: International Congress on Environmental Modelling and Software, pp. 1272–1280, Barcelona, Spain, 2008.
  52. J. L. Díaz, M. Herrera, J. Izquierdo, I. Montalvo, and R. Pérez-García, “A particle swarm optimization derivative applied to cluster analysis,” in Proceedings of the 4th Biennal Meeting, iEMSs 2008: International Congress on Environmental Modelling and Software, Barcelona, Spain, 2008.
  53. J. Izquierdo, I. Montalvo, R. Pérez, and V. S. Fuertes, “Forecasting pedestrian evacuation times by using swarm intelligence,” Physica A, vol. 388, no. 7, pp. 1213–1220, 2009. View at Publisher · View at Google Scholar
  54. M. Herrera, J. Izquierdo, I. Montalvo, J. García-Armengol, and J. V. Roig, “Identification of surgical practice patterns using evolutionary cluster analysis,” Mathematical and Computer Modelling, vol. 50, no. 5-6, pp. 705–712, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  55. K. P. Sycara, “Multiagent systems,” American Association for Artificial Inteligence—AI Magazine, vol. 19, no. 2, pp. 79–92, 1998.
  56. M. Wooldridge, An Intoduction to Multiagent Systems, John Wiley & Sons, New York, NY, USA, 2002.
  57. A. P. Wierzbicki, “The use of reference objectives in multiobjective optimization,” in Multiple Criteria Decision Making Theory and Application, T. Gal and G. Fandel, Eds., Springer-Verlag, Berlin, Germany, 1980. View at Zentralblatt MATH
  58. K. Deb, J. Sundar, N. U. B. Rao, and S. Chaudhuri, “Reference point based multiobjective optimization using evolutionary algorithms,” International Journal of Computational Intelligence Research, vol. 2, no. 3, 2006.
  59. J. Molina, L. V. Santana, A. G. Hernández-Díaz, C. A. Coello Coello, and R. Caballero, “G-dominance: reference point based dominance for multiobjective metaheuristics,” European Journal of Operational Research, vol. 197, no. 2, pp. 685–692, 2009. View at Publisher · View at Google Scholar
  60. M. Reyes-Sierra and C. A. Coello Coello, “Multi-objective particle swarm optimizers: a survey of the state-of-the-art,” International Journal of Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.
  61. G. Dupont, S. Adam, Y. Lecourtier, and B. Grilheres, “Multi objective particle swarm optimization using enhanced dominance and guide selection,” International Journal of Computational Intelligence Research, vol. 4, no. 2, pp. 145–158, 2008.
  62. I. Montalvo, J. B. Martínez-Rodríguez, J. Izquierdo, and R. Pérez-García, “Water distribution system design using agent swarm optimization,” in Proceedings of the 12th Annual Water Distribution Systems Analysis conference (WDSA '10), Tucson, Ariz, USA, 2010.
  63. O. Fujiwara and B. Khang, “A two-phase decomposition method for optimal design of looped water distribution networks,” Water Resources Research, vol. 26, no. 4, pp. 539–549, 1990. View at Publisher · View at Google Scholar
  64. D. A. Savic and G. A. Walters, “Genetic algorithms for least-cost design of water distribution networks,” Journal of Water Resources Planning and Management—ASCE, vol. 123, no. 2, pp. 67–77, 1997.
  65. A. C. Zecchin, A. R. Simpson, H. R. Maier, and J. B. Nixon, “Parametric study for an ant algorithm applied to water distribution system optimization,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 2, pp. 175–191, 2005. View at Publisher · View at Google Scholar
  66. Y. Liu, Z. Wang, J. Liang, and X. Liu, “Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays,” IEEE Transactions on Neural Networks, vol. 20, no. 7, pp. 1102–1116, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. J. Liang, Z. Wang, and X. Liu, “State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case,” IEEE Transactions on Neural Networks, vol. 20, no. 5, pp. 781–793, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at PubMed
  69. B. Shen, Z. Wang, and X. Liu, “Bounded H-infinity synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 145–157, 2011.