About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 986134, 11 pages
http://dx.doi.org/10.1155/2012/986134
Research Article

Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition

1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
3Zhejiang Jieshang Vision Science and Technology Cooperation, Hangzhou 310013, China
4Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Received 12 January 2012; Accepted 3 February 2012

Academic Editor: Ming Li

Copyright © 2012 Xiaoyan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Chen, Y. Li, and N. M. Kwok, “Active vision in robotic systems: a survey of recent developments,” International Journal of Robotics Research, vol. 30, no. 11, pp. 1343–1377, 2011. View at Publisher · View at Google Scholar
  2. T. Gu, L. Wang, Z. Wu, X. Tao, and J. Lu, “A pattern mining approach to sensor-based human activity recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 9, pp. 1359–1372, 2011. View at Publisher · View at Google Scholar
  3. X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A framework for hand gesture recognition based on accelerometer and EMG sensors,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 41, no. 6, pp. 1064–1076, 2011. View at Publisher · View at Google Scholar
  4. I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez, “View-independent action recognition from temporal self-similarities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 172–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Isard and A. Blake, “Condensation—conditional density propagation for visual tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–8, 1998. View at Scopus
  6. S. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on Industrial Electronics, vol. 59, Article ID 814356, 18 pages, 2012.
  7. J. MacCormick and A. Blake, “Probabilistic exclusion principle for tracking multiple objects,” in Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), pp. 572–578, September 1999. View at Scopus
  8. J. MacCormick and M. Isard, “Partitioned sampling, articulated objects, and interface-quality hand tracking,” in Proceedings of the European Conferene Computer Vision, 2000.
  9. M. Tosas, Visual articulated hand tracking for interactive surfaces, Ph.D. thesis, University of Nottingham, 2006.
  10. X. Deyou, “A neural network approach for hand gesture recognition in virtual reality driving training system of SPG,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), pp. 519–522, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. B. Nguyen, S. Enokida, and E. Toshiaki, “Real-time hand tracking and gesturerecognition system,” in Proceedings of the International Conference on on Graphics, Vision and Image Processing (IGVIP '05 ), pp. 362–368, CICC, 2005.
  12. E. Holden, R. Owens, and G. Roy, “Hand movement classification using an adaptive fuzzy expert system,” International Journal of Expert Systems, vol. 9, no. 4, pp. 465–480, 1996.
  13. M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Real-time capable system for handgesture recognition using hidden markov models in stereo color image sequences,” Journal of WSCG, vol. 16, pp. 65–72, 2008.
  14. G. Saon and J. T. Chien, “Bayesian sensing hidden markov models,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, pp. 43–54, 2012.
  15. M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden markov model based continuous online gesture recognition,” in Proceedings of 14th International Conference on Pattern Recognition, vol. 2, pp. 1206–1208, 1998.
  17. N. D. Binh and T. Ejima, “Real-time hand gesture recognition using pseudo 3-d Hidden Markov Model,” in Proceedings of the 5th IEEE International Conference on Cognitive Informatics (ICCI '06), pp. 820–824, July 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Shi, Y. Wang, and J. Li, “A real time vision-based hand gestures recognition system,” in Proceedings of the 5th International Symposium on Advances in Computation and Intelligence (ISICA '10), vol. 6382, no. M4D, pp. 349–358, 2010. View at Publisher · View at Google Scholar
  19. M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Real-time capable system for handgesture recognition using hidden markov models in stereo color image sequences,” The Journal of WSCG, vol. 16, pp. 65–72, 2008.
  20. N. Liu, B. C. Lovell, P. J. Kootsookos, and R. I. A. Davis, “Model structure selection & training algorithms for an HMM gesture recognition system,” in Proceedings of the 9th International Workshop on Frontiers in Handwriting Recognition (IWFHR-9 '04), pp. 100–105, October 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Y. Chen and Y. F. Li, “Determination of stripe edge blurring for depth sensing,” IEEE Sensors Journal, vol. 11, no. 2, pp. 389–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. K. Lee and J. H. Kim, “An HMM-Based threshold model approach for gesture recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 961–973, 1999. View at Scopus
  23. M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012. View at Publisher · View at Google Scholar
  24. S. Chen, J. Zhang, Q. Guan, and S. Liu, “Detection and amendment of shape distor-tions based on moment invariants for active shape models,” IET Image Processing, vol. 5, no. 3, pp. 273–285, 2011.
  25. S. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalizedbelief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Zentralblatt MATH
  26. M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A hidden markovmodel-based isolated and meaningful hand gesture recognition,” Proceedings of World Academy of Science, Engineering and Technology, vol. 31, pp. 1307–6884, 2008.