About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 105283, 9 pages
http://dx.doi.org/10.1155/2013/105283
Research Article

A Method to Solve the Limitations in Drawing External Rays of the Mandelbrot Set

1Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 144, 28006 Madrid, Spain
2Department of Mathematics and Computer Science, “Avram Iancu” University, Ilie Măcelaru 1A, 400380 Cluj-Napoca, Romania
3Romanian Institute of Science and Technology, Cireşilor 29, 400487 Cluj-Napoca, Romania

Received 9 July 2013; Accepted 4 August 2013

Academic Editor: Guanrong (Ron) Chen

Copyright © 2013 M. Romera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Douady and J. H. Hubbard, “Itération des polynômes quadratiques complexes,” Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, vol. 294, no. 3, pp. 123–126, 1982. View at MathSciNet
  2. A. Douady, “Algorithms for computing angles in the Mandelbrot set,” in Chaotic Dynamics and Fractals, M. Barnsley and S. G. Demko, Eds., vol. 2, pp. 155–168, Academic Press, New York, NY, USA, 1986. View at MathSciNet
  3. A. Douady, “Julia set and the Mandelbrot set,” in The Beauty of Fractals, H. O. Peitgen and P. H. Richter, Eds., pp. 161–173, Springer, Berlin, Germany, 1986.
  4. L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, Berlin, Germany, 1993. View at MathSciNet
  5. IEEE 754-2008 Standard for Floating-Point Arithmetic, http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935.
  6. A. Chéritat, “Dynamique Holomorphe,” 1999, http://www.math.univ-toulouse.fr/~cheritat/.
  7. T. Kawahira, “Mandel,” 2008, http://www.math.nagoya-u.ac.jp/~kawahira/programs/mandel.html.
  8. W. Jung, “Mandel: software for real and complex dynamics,” 2012, http://www.mndynamics.com/indexp.html.
  9. M. Romera, G. Pastor, G. Álvarez, and F. Montoya, “External arguments of Douady cauliflowers in the Mandelbrot set,” Computers and Graphics, vol. 28, no. 3, pp. 437–449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Pastor, M. Romera, G. Álvarez, and F. Montoya, “Operating with external arguments in the Mandelbrot set antenna,” Physica D, vol. 171, no. 1-2, pp. 52–71, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  11. M. Romera, G. Pastor, G. Álvarez, and F. Montoya, “External arguments in the multiple-spiral medallions of the Mandelbrot set,” Computers and Graphics, vol. 30, no. 3, pp. 461–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Pastor, M. Romera, G. Álvarez, and F. Montoya, “External arguments for the chaotic bands calculation in the Mandelbrot set,” Physica A, vol. 353, no. 1–4, pp. 145–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Romera, G. Álvarez, D. Arroyo, A. B. Orue, V. Fernandez, and G. Pastor, “Drawing and computing external rays in the multiple-spiral medallions of the Mandelbrot set,” Computers and Graphics, vol. 32, no. 5, pp. 597–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Pastor, M. Romera, G. Álvarez, D. Arroyo, and F. Montoya, “Equivalence between subshrubs and chaotic bands in the Mandelbrot set,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 70471, 25 pages, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  15. M. Romera, G. Pastor, A. B. Orue, D. Arroyo, and F. Montoya, “Coupling patterns of external arguments in the multiple-spiral medallions of the Mandelbrot set,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 135637, 14 pages, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  16. G. Pastor, M. Romera, G. Álvarez, J. Nunez, D. Arroyo, and F. Montoya, “Operating with external arguments of Douady and Hubbard,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 45920, 17 pages, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  17. G. Pastor, M. Romera, G. Álvarez et al., “Algorithm for external arguments calculation of the nodes of a shrub in the Mandelbrot set,” Fractals, vol. 16, no. 2, pp. 159–168, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  18. G. Pastor, M. Romera, G. Álvarez et al., “A general view of pseudoharmonics and pseudoantiharmonics to calculate external arguments of Douady and Hubbard,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 484–497, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  19. H.-O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer, New York, NY, USA, 1986. View at Publisher · View at Google Scholar · View at MathSciNet
  20. K. W. Philip, “Field lines in the Mandelbrot set,” Computers and Graphics, vol. 16, no. 4, pp. 443–447, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Romera, G. Pastor, and F. Montoya, “Graphic tools to analyse one-dimensional quadratic maps,” Computers and Graphics, vol. 20, no. 2, pp. 333–339, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Bézier, “Procédé de définition numérique des courbes et surfaces non mathématiques: système Unisurf,” Automatisme, vol. 13, pp. 189–196, 1968.
  23. M. Lutzky, “Counting stable cycles in unimodal iterations,” Physics Letters A, vol. 131, no. 4-5, pp. 248–250, 1988. View at Publisher · View at Google Scholar · View at MathSciNet
  24. B. Branner, “The Mandelbrot set,” in Chaos and Fractals: The Mathematics Behind the Computer Graphics, vol. 39 of Proceedings of Symposia in Applied Mathematics, pp. 75–105, American Mathematical Society, Providence, RI, USA, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  25. R. L. Devaney, “The fractal geometry of the Mandelbrot set. 2. How to count and how to add,” Fractals, vol. 3, no. 4, pp. 629–640, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  26. D. Schleicher, “Internal addresses of the Mandelbrot set and Galois groups of polynomials,” http://arxiv.org/abs/math/9411238.
  27. R. L. Devaney, “The complex dynamics of quadratic polynomials,” in Complex Dynamical Systems, R. L. Devaney, Ed., vol. 49 of Proceedings of Symposia in Applied Mathematics, pp. 1–29, American Mathematical Society, Cincinnati, Ohio, USA, 1994. View at MathSciNet
  28. J. Farey, “On a curious property of vulgar fractions,” Philosophical Magazine, vol. 47, pp. 385–386, 1816.
  29. A. Douady, X. Buff, R. L. Devaney, and P. Sentenac, “Baby Mandelbrot sets are born in cauliflowers,” in The Mandelbrot Set, Theme and Variations, T. Lei, Ed., vol. 274, pp. 19–36, University Press Cambridge, 2000. View at MathSciNet
  30. R. P. Munafo, “Embedded Julia set,” 2008, http://mrob.com/pub/muency/embeddedjuliaset.html.