About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 182079, 7 pages
http://dx.doi.org/10.1155/2013/182079
Research Article

Dynamics of Artificial Satellites around Europa

1Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), 12.331-280 São José dos Campos, SP, Brazil
2Division of Space Mechanics and Control, INPE, 12.227-010 São José dos Campos, SP, Brazil

Received 22 October 2012; Revised 21 December 2012; Accepted 2 January 2013

Academic Editor: Silvia Maria Giuliatti Winter

Copyright © 2013 Jean Paulo dos Santos Carvalho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Scheeres, M. D. Guman, and B. F. Villac, “Stability analysis of planetary satellite orbiters: application to the Europa orbiter,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 778–787, 2001.
  2. M. E. Paskowitz and D. J. Scheeres, “Orbit mechanics about planetary satellites including higher order gravity fields,” in Space Flight Mechanics Meeting, paper AAS 2005-190, Copper Mountain, Colo, USA, January 2005.
  3. M. E. Paskowitz and D. J. Scheeres, “Transient behavior of planetary satellites including higher order gravity fields,” in Proceedings of the Astrodynamics Specialists Conference, paper AAS 2005-358, Lake Tahoe, Calif, USA, August 2005.
  4. M. Lara and R. Russell, “On the design of a science orbit about Europa,” in Space Flight Mechanics Meeting, paper 2006 AAS/AIAA, Tampa, Fla, USA, January 2006.
  5. J. P. S. Carvalho, R. Vilhena de Moraes, and A. F. B. A. Prado, “Nonsphericity of the moon and near sun-synchronous polar lunar orbits,” Mathematical Problems in Engineering, vol. 2009, Article ID 740460, 24 pages, 2009. View at Publisher · View at Google Scholar
  6. A. Elipe and M. Lara, “Frozen orbits about moon,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 238–243, 2003. View at Publisher · View at Google Scholar
  7. D. Folta and D. Quinn, “Lunar frozen orbits,” Paper AIAA 2006-6749, 2006.
  8. J. P. S. Carvalho, R. Vilhena de Moraes, and A. F. B. A. Prado, “Some orbital characteristics of lunar artificial satellites,” Celestial Mechanics & Dynamical Astronomy, vol. 108, no. 4, pp. 371–388, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. Lara and J. F. Palacián, “Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites,” Mathematical Problems in Engineering, vol. 2009, Article ID 753653, 18 pages, 2009.
  10. D. Brouwer, “Solution of the problem of an artificial satellite, theory without drag,” The Astronomical Journal, vol. 64, no. 9, pp. 378–397, 1959. View at MathSciNet
  11. R. A. Broucke, “Long-term third-body effects via double averaging,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar
  12. A. F. B. A. Prado, “Third-body perturbation in orbits around natural satellites,” Journal of Guidance, Control and Dynamics, vol. 26, no. 1, pp. 33–40, 2003. View at Publisher · View at Google Scholar
  13. T. Yokoyama, M. T. Santos, G. Gardin, and O. C. Winter, “On the orbits of the outer satellites of Jupiter,” Astronomy and Astrophysics, vol. 401, no. 2, pp. 763–772, 2003. View at Publisher · View at Google Scholar
  14. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York, NY, USA, 1961. View at MathSciNet
  15. X. Liu, H. Baoyin, and X. Ma, “Long-term perturbations due to a disturbing body in elliptic inclined orbit,” Astrophysics and Space Science, vol. 339, no. 2, pp. 295–304, 2012. View at Publisher · View at Google Scholar
  16. C. D. Murray and S. F. Dermott, Solar System Dynamics, Cambridge University Press, Cambridge, UK, 1999. View at Zentralblatt MATH · View at MathSciNet
  17. M. E. Paskowitz and D. J. Scheeres, “Design of science orbits about planetary satellites: application to Europa,” Journal of Guidance, Control and Dynamics, vol. 29, no. 5, pp. 1147–1158, 2006. View at Publisher · View at Google Scholar
  18. J. P. S. Carvalho, A. Elipe, R. Vilhena de Moraes, and A. F. B. A. Prado, “Frozen orbits around the Europa satellite,” in Proceedings of the International Conference on Chaos and Nonlinear Dynamics: Dynamics Days South America, INPE, National Institute for Space Research, São José dos Campos, Brazil, July 2010.
  19. J. P. S. Carvalho, A. Elipe, R. Vilhena de Moraes, and A. F. B. A. Prado, “Low-altitude, near-polar and near-circular orbits around Europa,” Advances in Space Research, vol. 49, no. 5, pp. 994–1006, 2012. View at Publisher · View at Google Scholar
  20. J. P. S. Carvalho, D. C. Mourão, A. Elipe, et al., “Frozen orbits around Europa,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 22, no. 10, Article ID 1250240, 13 pages, 2012. View at Publisher · View at Google Scholar
  21. G. E. O. Giacaglia, J. Murphy, and T. Felsentreger, “A semi-analytic theory for the motion of a lunar satellite,” Celestial Mechanics, vol. 3, no. 1, pp. 3–66, 1970. View at Publisher · View at Google Scholar
  22. M. Lara and R. P. Russell, “Computation of a science orbit about Europa,” Journal of Guidance, Control and Dynamics, vol. 30, no. 1, pp. 259–263, 2007. View at Publisher · View at Google Scholar
  23. J. Kovalevsky, Introduction to Celestial Mechanics, Bureau des Longitudes, Paris, France, 1967.
  24. B. De Saedeleer and J. Henrard, “The combined effect of J2 and C22 on the critical inclination of a lunar orbiter,” Advances in Space Research, vol. 37, no. 1, pp. 80–87, 2006. View at Publisher · View at Google Scholar