About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 247268, 9 pages
http://dx.doi.org/10.1155/2013/247268
Research Article

A Large Span Crossbeam Vibration Frequencies Analysis Based on an Analogous Beam Method

College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China

Received 22 November 2012; Revised 9 January 2013; Accepted 9 January 2013

Academic Editor: Igor Andrianov

Copyright © 2013 Zhifeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. P. Zhang and N. S. Zhang, “Self-evolutionary compensation of machine tool crossbeam deformation induced by gravity,” Journal of Tsinghua University, vol. 46, no. 2, pp. 191–193, 2006. View at Scopus
  2. D. Xu, Q. Liu, S. M. Yuan, et al., “Dynamic simulation for a gantry machining center beam,” Journal of Vibration and Shock, vol. 2, pp. 168–172, 2008.
  3. L. M. Xie, D. M. Li, H. Shen, et al., “Optimum design of scene milling machine beam based on finite element analysis,” Modular Machine Tool and Automatic Manufacturing Technique, vol. 9, pp. 73–75, 2008.
  4. M. Zatarain, E. Lejardi, and F. Egaña, “Modular synthesis of machine tools,” CIRP Annals—Manufacturing Technology, vol. 47, no. 1, pp. 333–336, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. T. N. Guo, F. J. Xi, Z. F. Liu, Q. Cheng, and L. G. Cai, “Simulation analysis and experiment research for a large span and heavy load crossbeam,” Advanced Materials Research, vol. 211-212, pp. 1210–1215, 2011. View at Publisher · View at Google Scholar
  6. A. Williams, “Elastic center and column analogy methods,” in Structural Analysis—In Theory and Practice, chapter 6, pp. 251–291, Butterworth-Heinemann, Boston, Mass, USA, 2009.
  7. A. M. Ellakany, K. M. Elawadly, and B. N. Alhamaky, “A combined transfer matrix and analogue beam method for free vibration analysis of composite beams,” Journal of Sound and Vibration, vol. 277, no. 4-5, pp. 765–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Irschik and M. Naderb, “Actuator placement in static bending of smart beams utilizing Mohr’s analogy,” Engineering Structures, vol. 31, no. 8, pp. 1698–1720, 2009. View at Publisher · View at Google Scholar
  9. U. Gamer, “Mohr's analogy applied to the beam with elastic joint,” Forschung im Ingenieurwesen A, vol. 49, no. 5, pp. 141–142, 1983. View at Publisher · View at Google Scholar
  10. H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation,” Engineering Structures, vol. 24, no. 1, pp. 5–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Manalo, T. Aravinthan, W. Karunasena, and N. Stevens, “Analysis of a typical railway turnout sleeper system using grillage beam analogy,” Finite Elements in Analysis and Design, vol. 48, no. 1, pp. 1376–1391, 2012. View at Publisher · View at Google Scholar
  12. O. J. Aldraihem and A. A. Khdeir, “Precise deflection analysis of beams with piezoelectric patches,” Composite Structures, vol. 60, no. 2, pp. 135–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sato, S. Kanie, and T. Mikami, “Mathematical analogy of a beam on elastic supports as a beam on elastic foundation,” Applied Mathematical Modelling, vol. 32, no. 5, pp. 688–699, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. H. Rubin, “Uniform formulae of first- and second-order theory for skeletal structures,” Engineering Structures, vol. 19, no. 11, pp. 903–909, 1997. View at Publisher · View at Google Scholar
  15. H. Mang and G. Hofstetter, Festigkeitslehre, Springer, New York, NY, USA, 2nd edition, 2004.
  16. H. Irschik, “Analogy between refined beam theories and the Bernoulli-Euler theory,” International Journal of Solids and Structures, vol. 28, no. 9, pp. 1105–1112, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. S. Z. Al-Sarraf and A. A. Ali, “Vibration and stability of plates using beam-column analogy,” Emirates Journal For Engineering Research, vol. 11, no. 1, pp. 57–65, 2006.
  18. M. El-Mously, “A Timoshenko-beam-on-Pasternak-foundation analogy for cylindrical shells,” Journal of Sound and Vibration, vol. 261, no. 4, pp. 635–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Szyszkowski and I. S. Grewal, “Beam analogy for optimal control of linear dynamic systems,” Computational Mechanics, vol. 25, no. 5, pp. 489–500, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. X. J. Dong and G. Meng, “Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method,” International Journal of Advanced Manufacturing Technology, vol. 27, no. 9-10, pp. 841–844, 2006. View at Publisher · View at Google Scholar
  21. J. Turmo, G. Ramos, and A. C. Aparicio, “Shear truss analogy for concrete members of solid and hollow circular cross section,” Engineering Structures, vol. 31, no. 2, pp. 455–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhang, K. K. F. Wong, and Y. Wang, “Performance assessment of moment resisting frames during earthquakes based on the force analogy method,” Engineering Structures, vol. 29, no. 10, pp. 2792–2802, 2007. View at Publisher · View at Google Scholar · View at Scopus