About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 302627, 8 pages
http://dx.doi.org/10.1155/2013/302627
Research Article

A Hybrid Algorithm of Traffic Accident Data Mining on Cause Analysis

1State Key Laboratory of Automobile Dynamic Simulation, Jilin University, Changchun 130022, China
2College of Traffic, Jilin University, Changchun 130022, China
3School of Automobile, Chang’an University, Xi’an 710064, China
4School of Automotive Engineering, Tongji University, Shanghai 201804, China

Received 6 October 2012; Revised 30 December 2012; Accepted 31 December 2012

Academic Editor: Baozhen Yao

Copyright © 2013 Jianfeng Xi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Nabi, L. R. Salmi, S. Lafont, M. Chiron, M. Zins, and E. Lagarde, “Attitudes associated with behavioral predictors of serious road traffic crashes: results from the GAZEL cohort,” Injury Prevention, vol. 13, no. 1, pp. 26–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. R. Green, K. R. Agent, and J. G. Pigman, “Evaluation of auto incident recording system (AIRS),” Tech. Rep. KTC-05-09/SPR277-04-1F, Kentucky Transportation Center, 2005.
  3. M. Hirasawa, “Development of traffic accident analysis system using GIS,” Proceedings of the Eastern Asia Society for Transportation Studies, vol. 10, no. 4, pp. 1193–1198, 2005.
  4. B. Yu, W. H. K. Lam, and M. L. Tam, “Bus arrival time prediction at bus stop with multiple routes,” Transportation Research Part C, vol. 19, no. 6, pp. 1157–1170, 2011. View at Publisher · View at Google Scholar
  5. B. Yu, Z. Yang, and S. Li, “Real-time partway deadheading strategy based on transit service reliability assessment,” Transportation Research Part A, vol. 46, no. 8, pp. 1265–1279, 2012. View at Publisher · View at Google Scholar
  6. B. Yu, Z. Z. Yang, P.-H. Jin, S.-H. Wu, and B. Z. Yao, “Transit route network design using ant colony optimization,” Transportation Research Part C, vol. 22, pp. 58–75, 2012. View at Publisher · View at Google Scholar
  7. K. Geurts, G. Wets, T. Brijs, and K. Vanhoof, “Profiling of high-frequency accident locations by use of association rules,” Journal of the Transportation Research Board, no. 1840, pp. 123–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Tesema, A. Abraham, and C. Grosan, “Rule mining and classification of road traffic accidents using adaptive regression trees. I,” Journal of Simulation, vol. 6, no. 10, pp. 80–94, 2005.
  9. R. Marukatat, “Structure-based rule selection framework for association rule mining of traffic accident data,” in Computational Intelligence and Security, vol. 4456, pp. 231–239, 2007. View at Publisher · View at Google Scholar
  10. L.-Y. Dong, G.-Y. Liu, S.-M. Yuan, Y.-L. Li, and Z.-H. Wu, “Applicaition of data mining to traffic accidents analysis,” Journal of Jilin University Science Edition, vol. 44, no. 6, pp. 951–955, 2006.
  11. D.-H. Lee, S.-T. Jeng, and P. Chandrasekar, “Applying data mining techniques for traffic incident analysis,” Journal of the Institution of Engineers, vol. 44, no. 2, pp. 90–101, 2004.
  12. Y. Hassan and E. Tazaki, “Emergence decision using hybrid rough sets/cellular automata,” Kybernetes, vol. 35, no. 6, pp. 797–813, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. Y. Zhang, F. Wang, J. Dai, W. Huang, and Y. Chen, “New comprehensive evaluation algorithm based on fuzzy clustering and information entropy,” Journal of Changchun Post and Telecommunication Institute, vol. 22, no. 6, pp. 643–647, 2004.
  14. Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, May 1998. View at Scopus
  15. X. Wang, X. Liu, and F. Dai, “Method and application of mining association rules based on PSO algorithm,” Information Technology and Informatization, vol. 3, pp. 85–87, 2009.
  16. Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem,” Computers and Operations Research, vol. 35, no. 9, pp. 2807–2839, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  17. T. J. Ai and V. Kachitvichyanukul, “A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery,” Computers and Operations Research, vol. 36, no. 5, pp. 1693–1702, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. P. Pongchairerks and V. Kachitvichyanukul, “A particle swarm optimization algorithm on job-shop scheduling problems with multi-purpose machines,” Asia-Pacific Journal of Operational Research, vol. 26, no. 2, pp. 161–184, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. A. W. Mohemmed, N. C. Sahoo, and T. K. Geok, “Solving shortest path problem using particle swarm optimization,” Applied Soft Computing Journal, vol. 8, no. 4, pp. 1643–1653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Lovbierg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimizer with breeding and subpopulations,” Institute of Electrical and Electronics Engineers, no. 7, pp. 115–118, 2001.
  21. I. B. Gundogdu, F. Sari, and O. Esen, “A new approach for geographical information system-supported mapping of traffic accident data,” TS1B-GIS in Urban Planning and Management, 6:03~11, 2008.
  22. ESTC, EU Transport Accident, Incident and Casualty Databases: Current Status and Future Needs, European Transport Safety Council, 2001.
  23. A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algorithm for mining association rules in large databases,” in Proceedings of the 21th International Conference on Very Large Database (VLDB '95), pp. 432–443, Zurieh, Switzerland, 1995. View at Scopus