About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 341232, 12 pages
http://dx.doi.org/10.1155/2013/341232
Research Article

Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection

1College of Engineering, Ocean University of China, Qingdao 266100, China
2Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
3School of Mathematics, University of Jinan, Jinan 250022, China

Received 13 September 2012; Accepted 20 January 2013

Academic Editor: Jyh Horng Chou

Copyright © 2013 S. P. Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  2. T. Murmu and S. Adhikari, “Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems,” European Journal of Mechanics A, vol. 34, pp. 52–62, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  3. A. C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, NY, USA, 2002. View at MathSciNet
  4. Y. Chen, J. D. Lee, and A. Eskandarian, “Atomistic viewpoint of the applicability of microcontinuum theories,” International Journal of Solids and Structures, vol. 41, no. 8, pp. 2085–2097, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Arash and Q. Wang, “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes,” Computational Materials Science, vol. 51, no. 1, pp. 303–313, 2012. View at Publisher · View at Google Scholar
  6. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent studies on buckling of carbon nanotubes,” Applied Mechanics Reviews, vol. 63, no. 3, Article ID 030804, 18 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, no. 5334, pp. 1971–1975, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Falvo, G. J. Clary, R. M. Taylor et al., “Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, no. 6651, pp. 582–584, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response,” Physical Review Letters, vol. 76, no. 14, pp. 2511–2514, 1996. View at Publisher · View at Google Scholar
  10. G. Alici, “An effective modelling approach to estimate nonlinear bending behaviour of cantilever type conducting polymer actuators,” Sensors and Actuators B, vol. 141, no. 1, pp. 284–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, NY, USA, 4th edition, 1944. View at MathSciNet
  12. S. P. Timoshenko, Theory of Elastic Stability, Engineering Societies Monographs, McGraw-Hill, New York, NY, USA, 2nd edition, 1961. View at MathSciNet
  13. V. G. A. Goss, “The history of the planar elastica: insights into mechanics and scientific method,” Science and Education, vol. 18, no. 8, pp. 1057–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Matsutani, “Euler's elastica and beyond,” Journal of Geometry and Symmetry in Physics, vol. 17, pp. 45–86, 2010. View at Zentralblatt MATH · View at MathSciNet
  15. J. C. Lotz, O. M. O'Reilly, and D. M. Peters, “Some comments on the absence of buckling of the ligamentous human spine in the sagittal plane,” Mechanics Research Communications, vol. 40, pp. 11–15, 2012. View at Publisher · View at Google Scholar
  16. H. F. Chen, S. P. Xu, and H. Y. Guo, “Nonlinear analysis of flexible and steel catenary risers with internal flow and seabed interaction effects,” Journal of Marine Science and Application, vol. 10, no. 2, pp. 156–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. F. Chen, S. P. Xu, and H. Y. Guo, “Parametric study of global response behavior of deepwater free standing hybrid risers,” Journal of Ship Mechanics, vol. 15, pp. 996–1004, 2011.
  18. H. W. Haslach Jr., “Post-buckling behavior of columns with non-linear constitutive equations,” International Journal of Non-Linear Mechanics, vol. 20, no. 1, pp. 53–67, 1985. View at Scopus
  19. S. Al-Sadder and N. Shatarat, “A proposed technique for large deflection analysis of cantilever beams composed of two nonlinear elastic materials subjected to an inclined tip concentrated force,” Advances in Structural Engineering, vol. 10, no. 3, pp. 319–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Vinogradov and W. R. Derrick, “Structure-material relations in the buckling problem of asymmetric composite columns,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 167–175, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. Y. A. Kang and X. F. Li, “Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force,” International Journal of Non-Linear Mechanics, vol. 44, no. 6, pp. 696–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Challamel, “On geometrically exact post-buckling of composite columns with interlayer slip—the partially composite elastica,” International Journal of Non-Linear Mechanics, vol. 47, no. 3, pp. 7–17, 2012. View at Publisher · View at Google Scholar
  23. Y. Frostig, “Elastica of sandwich panels with a transversely flexible core—a high-order theory approach,” International Journal of Solids and Structures, vol. 46, no. 10, pp. 2043–2059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. P. Li, K. Schulgasser, and G. Cederbaum, “Large deflection analysis of poroelastic beams,” International Journal of Non-Linear Mechanics, vol. 33, no. 1, pp. 1–14, 1998. View at Scopus
  25. G. Suire and G. Cederbaum, “Elastica type dynamic stability analysis of viscoelastic columns,” Archive of Applied Mechanics, vol. 64, no. 5, pp. 307–316, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Mikata, “Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube,” Acta Mechanica, vol. 190, no. 1–4, pp. 133–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Q. He, C. M. Wang, and K. Y. Lam, “Analytical bending solutions of elastica with one end held while the other end portion slides on a friction support,” Archive of Applied Mechanics, vol. 67, no. 8, pp. 543–554, 1997. View at Scopus
  28. J. S. Chen, H. C. Li, and W. C. Ro, “Slip-through of a heavy elastica on point supports,” International Journal of Solids and Structures, vol. 47, no. 2, pp. 261–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Kimball and L. W. Tsai, “Modeling of flexural beams subjected to arbitrary end loads,” Journal of Mechanical Design, vol. 124, no. 2, pp. 223–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Chucheepsakul, C. M. Wang, and X. Q. He, “Double curvature bending of variable-arc-length elasticas,” Journal of Applied Mechanics, vol. 66, no. 1, pp. 87–94, 1999. View at Scopus
  31. R. H. Plaut, D. A. Dillard, and L. N. Virgin, “Postbuckling of elastic columns with second-mode imperfection,” Journal of Engineering Mechanics, vol. 132, no. 8, pp. 898–901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. B. S. Shvartsman, “Direct method for analysis of flexible cantilever beam subjected to two follower forces,” International Journal of Non-Linear Mechanics, vol. 44, no. 2, pp. 249–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. S. Liu, “A Lie-group shooting method for post buckling calculations of elastica,” Computer Modeling in Engineering and Sciences, vol. 30, no. 1, pp. 1–16, 2008. View at Scopus
  34. R. Kumar, L. S. Ramachandra, and D. Roy, “Techniques based on genetic algorithms for large deflection analysis of beams,” Sadhana, vol. 29, no. 6, pp. 589–604, 2004. View at Publisher · View at Google Scholar
  35. T. Y. Wang, C. G. Koh, and C. Y. Liaw, “Post-buckling analysis of planar elastica using a hybrid numerical strategy,” Computers and Structures, vol. 88, no. 11-12, pp. 785–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Sepahi, M. R. Forouzan, and P. Malekzadeh, “Differential quadrature application in post-buckling analysis of a hinged-fixed elastica under terminal forces and self-weight,” Journal of Mechanical Science and Technology, vol. 24, no. 1, pp. 331–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. D. Berkey and M. I. Freedman, “A perturbation method applied to the buckling of a compressed elastica,” Journal of Computational and Applied Mathematics, vol. 4, no. 3, pp. 213–221, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  38. C. Y. Wang, “Asymptotic formula for the flexible bar,” Mechanism and Machine Theory, vol. 34, no. 4, pp. 645–655, 1999. View at Scopus
  39. W. Lacarbonara, “Buckling and post-buckling of non-uniform non-linearly elastic rods,” International Journal of Mechanical Sciences, vol. 50, no. 8, pp. 1316–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. E. N. Mazzilli, “Buckling and post-buckling of extensible rods revisited: a multiple-scale solution,” International Journal of Non-Linear Mechanics, vol. 44, no. 2, pp. 200–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. S. Shen, “A novel technique for nonlinear analysis of beams on two-parameter elastic foundations,” International Journal of Structural Stability and Dynamics, vol. 11, no. 6, pp. 999–1014, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. J. Wang, J. K. Chen, and S. Liao, “An explicit solution of the large deformation of a cantilever beam under point load at the free tip,” Journal of Computational and Applied Mathematics, vol. 212, no. 2, pp. 320–330, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  43. N. Tolou and J. L. Herder, “A seminalytical approach to large deflections in compliant beams under point load,” Mathematical Problems in Engineering, vol. 2009, Article ID 910896, 13 pages, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  44. S. Ghosh and D. Roy, “Numeric-analytic form of the adomian decomposition method for two-point boundary value problems in nonlinear mechanics,” Journal of Engineering Mechanics, vol. 133, no. 10, pp. 1124–1133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. P. N. Andriotaki, I. H. Stampouloglou, and E. E. Theotokoglou, “Nonlinear asymptotic analysis in elastica of straight bars-analytical parametric solutions,” Archive of Applied Mechanics, vol. 76, no. 9-10, pp. 525–536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Wang, Y. Xiang, and S. Kitipornchai, “Postbuckling of nano rods/tubes based on nonlocal beam theory,” International Journal of Applied Mechanics, vol. 1, no. 2, pp. 259–266, 2009. View at Publisher · View at Google Scholar
  47. S. P. Xu, “Elastica type buckling analysis of micro-/nano-rods using nonlocal elasticity theory,” in Proceedings of the 2nd Asian Conference on Mechanics of Functional Materials and Structures (ACMFMS'10), pp. 219–222, Nanjing, China, 2010.
  48. S. P. Xu, C. M. Wang, and M. R. Xu, “Buckling analysis of shear deformable nanorods within the framework of nonlocal elasticity theory,” Physica E, vol. 44, no. 7-8, pp. 1380–1385, 2012. View at Publisher · View at Google Scholar
  49. T. M. Atanackovic, B. N. Novakovic, and Z. Vrcelj, “Application of Pontryagin's principle to bimodal optimization of nano rods,” International Journal of Structural Stability and Dynamics, vol. 12, no. 3, Article ID 1250012, 11 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  50. T. R. Tauchert and W. Y. Lu, “Large deformation and postbuckling behavior of an initially deformed rod,” International Journal of Non-Linear Mechanics, vol. 22, no. 6, pp. 511–520, 1987. View at Scopus
  51. M. D. Williams, F. V. Keulen, and M. Sheplak, “Modeling of initially curved beam structures for design of multistable MEMS,” Journal of Applied Mechanics, vol. 79, no. 1, Article ID 011006, 11 pages, 2012. View at Publisher · View at Google Scholar
  52. A. N. Kounadis and A. F. Economou, “The effects of initial curvature and other parameters on the nonlinear buckling of simple frames,” Journal of Structural Mechanics, vol. 12, no. 1, pp. 27–42, 1984. View at Scopus
  53. S. A. Emam, “A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams,” Composite Structures, vol. 90, no. 2, pp. 247–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. W. H. Duan and C. M. Wang, “Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory,” Nanotechnology, vol. 18, no. 38, Article ID 385704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Wang and C. M. Wang, “The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes,” Nanotechnology, vol. 18, no. 7, Article ID 075702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Mallis and A. N. Kounadis, “On the accuracy of various large axial displacement formulae for crooked columns,” Computational Mechanics, vol. 4, no. 1, pp. 47–58, 1988. View at Publisher · View at Google Scholar · View at Scopus
  57. T. M. Atanackovic, B. N. Novakovic, and Z. Vrcelj, “Shape optimization against buckling of micro- and nano-rods,” Archive of Applied Mechanics, vol. 82, no. 10-11, pp. 1303–1311, 2012. View at Publisher · View at Google Scholar
  58. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  59. J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  60. M. Mojahedi, M. M. Zand, and M. T. Ahmadian, “Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method,” Applied Mathematical Modelling, vol. 34, no. 4, pp. 1032–1041, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  61. M. R. Xu, S. P. Xu, and H. Y. Guo, “Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method,” Computers and Mathematics with Applications, vol. 60, no. 3, pp. 520–527, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  62. A. N. Kounadis and J. G. Mallis, “Elastica type buckling analysis of bars from non-linearly elastic material,” International Journal of Non-Linear Mechanics, vol. 22, no. 2, pp. 99–107, 1987. View at Scopus
  63. G. Kandakis and A. N. Kounadis, “On the large postbuckling response of nonconservative continuous systems,” Archive of Applied Mechanics, vol. 62, no. 4, pp. 256–265, 1992. View at Publisher · View at Google Scholar · View at Scopus
  64. A. N. Kounadis, J. Mallis, and A. Sbarounis, “Postbuckling analysis of columns resting on an elastic foundation,” Archive of Applied Mechanics, vol. 75, no. 6-7, pp. 395–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. N. Kounadis, “An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems,” Computational Mechanics, vol. 9, no. 3, pp. 221–231, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  66. N. Challamel and C. M. Wang, “On lateral-torsional buckling of non-local beams,” Advances in Applied Mathematics and Mechanics, vol. 2, no. 3, pp. 389–398, 2010. View at MathSciNet