About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 343842, 9 pages
http://dx.doi.org/10.1155/2013/343842
Research Article

XFEM for Thermal Crack of Massive Concrete

State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Received 28 June 2013; Revised 2 September 2013; Accepted 2 September 2013

Academic Editor: Song Cen

Copyright © 2013 Guowei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. de Borst and A. H. van den Boogaard, “Finite-element modeling of deformation and cracking in early-age concrete,” Journal of Engineering Mechanics, vol. 120, no. 12, pp. 2519–2534, 1994. View at Scopus
  2. Y. Xiang, Z. Zhang, S. He, and G. Dong, “Thermal-mechanical analysis of a newly cast concrete wall of a subway structure,” Tunnelling and Underground Space Technology, vol. 20, no. 5, pp. 442–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Mazars and J. P. Bournazel, “Modelling of damage processes due to volumic variations for maturing and matured concrete,” in Proceedings of the International RILEM Conference on Concrete: From Material to Structure, pp. 43–54, 1998.
  4. V. Waller, L. d'Aloïa, F. Cussigh, and S. Lecrux, “Using the maturity method in concrete cracking control at early ages,” Cement and Concrete Composites, vol. 26, no. 5, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Lackner and H. A. Mang, “Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures,” Cement and Concrete Composites, vol. 26, no. 5, pp. 551–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. de Schutter, “Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws,” Computers and Structures, vol. 80, no. 27–30, pp. 2035–2042, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Benboudjema and J. M. Torrenti, “Early-age behaviour of concrete nuclear containments,” Nuclear Engineering and Design, vol. 238, no. 10, pp. 2495–2506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Briffaut, F. Benboudjema, J. M. Torrenti, and G. Nahas, “A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures,” Cement and Concrete Research, vol. 41, no. 1, pp. 56–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Briffaut, F. Benboudjema, J. M. Torrenti, and G. Nahas, “Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures,” Engineering Structures, vol. 33, no. 4, pp. 1390–1401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Buffo-Lacarrière, A. Sellier, A. Turatsinze, and G. Escadeillas, “Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures,” Materials and Structures, vol. 44, no. 10, pp. 1821–1835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Abdelaziz and A. Hamouine, “A survey of the extended finite element,” Computers and Structures, vol. 86, no. 11-12, pp. 1141–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, vol. 45, no. 5, pp. 601–620, 1999. View at Scopus
  13. N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999. View at Scopus
  14. N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko, “Modeling holes and inclusions by level sets in the extended finite-element method,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 46-47, pp. 6183–6200, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. T.-P. Fries and T. Belytschko, “The extended/generalized finite element method: an overview of the method and its applications,” International Journal for Numerical Methods in Engineering, vol. 84, no. 3, pp. 253–304, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  16. R. Merle and J. Dolbow, “Solving thermal and phase change problems with the eXtended finite element method,” Computational Mechanics, vol. 28, no. 5, pp. 339–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. M. A. Areias and T. Belytschko, “Two-scale method for shear bands: thermal effects and variable bandwidth,” International Journal for Numerical Methods in Engineering, vol. 72, no. 6, pp. 658–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Duflot, “The extended finite element method in thermoelastic fracture mechanics,” International Journal for Numerical Methods in Engineering, vol. 74, no. 5, pp. 827–847, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. A. Zamani and M. R. Eslami, “Implementation of the extended finite element method for dynamic thermoelastic fracture initiation,” International Journal of Solids and Structures, vol. 47, no. 10, pp. 1392–1404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Zamani, R. Gracie, and M. R. Eslami, “Higher order tip enrichment of eXtended Finite Element Method in thermoelasticity,” Computational Mechanics, vol. 46, no. 6, pp. 851–866, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. E. N. Dvorkin, A. M. Cuitino, and G. Gioia, “Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions,” International Journal for Numerical Methods in Engineering, vol. 30, no. 3, pp. 541–564, 1990. View at Scopus
  22. C. Linder and F. Armero, “Finite elements with embedded strong discontinuities for the modeling of failure in solids,” International Journal for Numerical Methods in Engineering, vol. 72, no. 12, pp. 1391–1433, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. C. Linder and F. Armero, “Finite elements with embedded branching,” Finite Elements in Analysis and Design, vol. 45, no. 4, pp. 280–293, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel particle methods,” International Journal for Numerical Methods in Fluids, vol. 20, no. 8-9, pp. 1081–1106, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  26. S. N. Atluri, The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, Encino, Calif, USA, 2002.
  27. S. Bordas, T. Rabczuk, and G. Zi, “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment,” Engineering Fracture Mechanics, vol. 75, no. 5, pp. 943–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Aliabadi, “Boundary element formulations in fracture mechanics,” Applied Mechanics Reviews, vol. 50, no. 2, pp. 83–96, 1997. View at Scopus
  29. E. Pan and F. G. Yuan, “Boundary element analysis of three-dimensional cracks in anisotropic solids,” International Journal for Numerical Methods in Engineering, vol. 48, no. 2, pp. 211–237, 2000.
  30. G. K. Sfantos and M. H. Aliabadi, “Multi-scale boundary element modelling of material degradation and fracture,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 7, pp. 1310–1329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. N. Simpson, S. P. A. Bordas, J. Trevelyan, and T. Rabczuk, “A two-dimensional Isogeometric boundary element method for elastostatic analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 209–212, pp. 87–100, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  32. C. Zhao, B. E. Hobbs, and A. Ord, Fundamentals of Computational Geoscience: Numerical Methods and Algorithms, Springer, Berlin, Germany, 2009.
  33. C. Zhao, B. E. Hobbs, A. Ord, P. Hornby, S. Peng, and L. Liu, “Particle simulation of spontaneous crack generation problems in large-scale quasi-static systems,” International Journal for Numerical Methods in Engineering, vol. 69, no. 11, pp. 2302–2329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Zhao, B. E. Hobbs, A. Ord, S. Peng, and L. Liu, “An upscale theory of particle simulation for two-dimensional quasi-static problems,” International Journal for Numerical Methods in Engineering, vol. 72, no. 4, pp. 397–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Zhao, T. Nishiyama, and A. Murakami, “Numerical modelling of spontaneous crack generation in brittle materials using the particle simulation method,” Engineering Computations, vol. 23, no. 5, pp. 566–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Zhao, B. E. Hobbs, A. Ord, P. A. Robert, P. Hornby, and S. Peng, “Phenomenological modelling of crack generation in brittle crustal rocks using the particle simulation method,” Journal of Structural Geology, vol. 29, no. 6, pp. 1034–1048, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Zhao, B. E. Hobbs, A. Ord, and S. Peng, “Critical contact stiffness concept and simulation of crack generation in particle models of large length-scales,” Computers and Geotechnics, vol. 36, no. 1-2, pp. 81–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. E. O. Oñate, S. R. Idelsohn, F. del Pin, and R. Aubry, “The particle finite element method: an overview,” International Journal of Computational Methods, vol. 1, no. 2, pp. 267–307, 2004.
  39. S. R. Idelsohn, E. Oñate, F. del Pin, and N. Calvo, “Fluid-structure interaction using the particle finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 17-18, pp. 2100–2123, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  40. C. Zhao, B. E. Hobbs, A. Ord, and S. Peng, “Particle simulation of spontaneous crack generation associated with the laccolithic type of magma intrusion processes,” International Journal for Numerical Methods in Engineering, vol. 75, no. 10, pp. 1172–1193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Zhao, S. Peng, L. Liu, B. E. Hobbs, and A. Ord, “Effective loading algorithm associated with explicit dynamic relaxation method for simulating static problems,” Journal of Central South University of Technology, vol. 16, no. 1, pp. 125–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Zhao, “Computational simulation of frictional drill-bit movement in cemented granular materials,” Finite Elements in Analysis and Design, vol. 47, no. 8, pp. 877–885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Zhao, S. Peng, L. Liu, B. E. Hobbs, and A. Ord, “Computational modeling of free-surface slurry flow problems using particle simulation method,” Journal of Central South University, vol. 20, no. 6, pp. 1653–1660, 2013.
  44. T. Belytschko, N. Moës, S. Usui, and C. Parimi, “Arbitrary discontinuities in finite elements,” International Journal for Numerical Methods in Engineering, vol. 50, no. 4, pp. 993–1013, 2001.
  45. B.-F. Zhu, “Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling,” Journal of Hydraulic Engineering, vol. 3, pp. 28–34, 1991 (Chinese). View at Scopus
  46. J. Yang, Y. Hu, Z. Zuo, F. Jin, and Q. Li, “Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes,” Applied Thermal Engineering, vol. 35, no. 1, pp. 145–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. B.-F. Zhu, “Compound exponential formula for variation of thermal and mechanical properties with age of concrete,” Journal of Hydraulic Engineering, vol. 42, no. 1, pp. 1–7, 2011 (Chinese). View at Scopus
  48. Z. P. Bažant, “Prediction of concrete creep and shrinkage: past, present and future,” Nuclear Engineering and Design, vol. 203, no. 1, pp. 27–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, UK, 2000. View at MathSciNet
  50. R. Malm and H. Sundquist, “Time-dependent analyses of segmentally constructed balanced cantilever bridges,” Engineering Structures, vol. 32, no. 4, pp. 1038–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Guo, Y.-M. Zhu, M.-D. Zhu, and X.-Y. Zhang, “The formula design of creep coefficient for high performance concrete,” Journal of Sichuan University, vol. 42, no. 2, pp. 75–81, 2010 (Chinese). View at Scopus
  52. E. M. Wu and R. C. Reuter Jr., “Crack extension in fiberglass reinforced plastics,” Tech. Rep. 275, University of Illinois, 1965.
  53. V. K. Goyal, E. R. Johnson, and C. G. Dávila, “Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities,” Composite Structures, vol. 65, no. 3-4, pp. 289–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. G. de Schutter and L. Taerwe, “Degree of hydration-based description of mechanical properties of early age concrete,” Materials and Structures, vol. 29, no. 6, pp. 335–344, 1996. View at Scopus
  55. G. de Schutter and L. Taerwe, “Fracture energy of concrete at early ages,” Materials and Structures, vol. 30, no. 196, pp. 67–71, 1997. View at Scopus
  56. D. Cusson and T. Hoogeveen, “An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage,” Cement and Concrete Research, vol. 37, no. 2, pp. 200–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Zuo, Y. Hu, Y. Duan, and J. Yang, “Simulation of the temperature field in mass concrete with double layers of cooling pipes during construction,” Journal of Tsinghua University, vol. 52, no. 2, pp. 186–228, 2012 (Chinese). View at Scopus
  58. S. Wu, D. Huang, F.-B. Lin, H. Zhao, and P. Wang, “Estimation of cracking risk of concrete at early age based on thermal stress analysis,” Journal of Thermal Analysis and Calorimetry, vol. 105, no. 1, pp. 171–186, 2011. View at Publisher · View at Google Scholar · View at Scopus