About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 530349, 9 pages
http://dx.doi.org/10.1155/2013/530349
Research Article

Performance Recognition for Sulphur Flotation Process Based on Froth Texture Unit Distribution

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

Received 30 August 2012; Accepted 20 December 2012

Academic Editor: Bin Jiang

Copyright © 2013 Mingfang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Citir, Z. Aktas, and R. Berber, “Off-line image analysis for froth flotation of coal,” Computers and Chemical Engineering, vol. 28, no. 5, pp. 625–632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wang, F. Bergholm, and B. Yang, “Froth delineation based on image classification,” Minerals Engineering, vol. 16, no. 3, pp. 1183–1192, 2003. View at Publisher · View at Google Scholar
  3. C. Aldrich, C. Marais, B. J. Shean, and J. J. Cilliers, “Online monitoring and control of froth flotation systems with machine vision: a review,” International Journal of Mineral Processing, vol. 96, no. 1–4, pp. 1–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Hasu, J. Hätönen, and H. Hyötyniemi, “Analysis of flotation froth appearance by design of experiment,” in Proceedings of the IFAC Workshop on Future trends in Automation in Mineral and Metal, pp. 22–24, Espoo, Finland, 2000.
  5. G. Bonifazi, S. Serranti, F. Volpe, and R. Zuco, “Characteristisation of flotation froth colour and structure by machine vision,” Computers and Geosciences, vol. 27, no. 9, pp. 1111–1117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. N. Holtham and K. K. Nguyen, “On-line analysis of froth surface in coal and mineral flotation using JKFrothCam,” International Journal of Mineral Processing, vol. 64, no. 2-3, pp. 163–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. Moolman, C. Aldrich, and J. S. J. Van Deventer, “The monitoring of froth surfaces on industrial flotation plants using connectionist image processing techniques,” Minerals Engineering, vol. 8, no. 1-2, pp. 23–30, 1995. View at Scopus
  8. J. Kaartinen, J. Hätönen, H. Hyötyniemi, and J. Miettunen, “Machine-vision-based control of zinc flotation-A case study,” Control Engineering Practice, vol. 14, no. 12, pp. 1455–1466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. B. J. Shean and J. J. Cilliers, “A review of froth flotation control,” International Journal of Mineral Processing, vol. 100, no. 3-4, pp. 57–71, 2011. View at Publisher · View at Google Scholar
  10. J. J. Liu and J. F. MacGregor, “Froth-based modeling and control of flotation processes,” Minerals Engineering, vol. 21, no. 9, pp. 642–651, 2008. View at Publisher · View at Google Scholar
  11. J. M. Hargrave and S. T. Hall, “Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis,” Minerals Engineering, vol. 10, no. 6, pp. 613–621, 1997. View at Publisher · View at Google Scholar
  12. N. Saghatoleslam, H. Karimi, R. Rahimi, and H. H. A. Shirazi, “Modeling of texture and color froth characteristics for evaluation of flotation performance in sarcheshmeh copper pilot plant using image analysis and neural networks,” International Journal of Engineering B, vol. 17, no. 2, pp. 121–130, 2004. View at Scopus
  13. G. Bartolacci, P. Pelletier, J. Tessier, C. Duchesne, P. A. Bossé, and J. Fournier, “Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I: flotation control based on froth textural characteristics,” Minerals Engineering, vol. 19, no. 6–8, pp. 734–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. C. He and L. Wang, “Texture unit, texture spectrum, and texture analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 4, pp. 509–512, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. J. X. Li and L. T. Tran, “Nonparametric estimation of conditional expectation,” Journal of Statistical Planning and Inference, vol. 139, no. 2, pp. 164–175, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. L. Guo, H. Wang, and A. P. Wang, “Optimal probability density function control for NARMAX stochastic systems,” Automatica, vol. 44, no. 7, pp. 1904–1911, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. P. Jampana, S. L. Shah, and R. Kadali, “Computer vision based interface level control in separation cells,” Control Engineering Practice, vol. 18, no. 4, pp. 349–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Beneventi, X. Rousset, and E. Zeno, “Modelling transport phenomena in a flotation de-inking column: focus on gas flow, pulp and froth retention time,” International Journal of Mineral Processing, vol. 80, no. 1, pp. 43–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Cilliers and C. L. E. Swartz, “Simulation of quantitative fault diagnosis in backfill hydrocyclones,” Minerals Engineering, vol. 8, no. 8, pp. 871–882, 1995. View at Scopus
  20. C. H. Xu, W. H. Gui, C. H. Yang, H. Q. Zhu, Y. Q. Lin, and C. Shi, “Flotation process fault detection using output PDF of bubble size distribution,” Minerals Engineering, vol. 26, no. 1, pp. 5–12, 2012. View at Publisher · View at Google Scholar
  21. T. Kourti, “Process analysis and abnormal situation detection: from theory to practice,” IEEE Control Systems Magazine, vol. 22, no. 5, pp. 10–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Hodouin, J. F. MacGregor, M. Hou, and M. Franklin, “Multivariate statistical analysis of mineral processing plant data,” CIM Bulletin of Mmerul Processing, vol. 86, no. 975, pp. 23–34, 1993.
  23. T. Kourti, “Application of latent variable methods to process control and multivariate statistical process control in industry,” International Journal of Adaptive Control and Signal Processing, vol. 19, no. 4, pp. 213–246, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. D. Garcia-Alvarez, M. J. Fuente, and G. I. Sainz, “Fault detection and isolation in transient states using principal component analysis,” Journal of Process Control, vol. 22, no. 3, pp. 551–563, 2012. View at Publisher · View at Google Scholar