About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 574072, 14 pages
http://dx.doi.org/10.1155/2013/574072
Research Article

Vibration Isolation Platform with Multiple Tuned Mass Dampers for Reaction Wheel on Satellites

School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received 18 March 2013; Revised 30 May 2013; Accepted 3 June 2013

Academic Editor: Rongni Yang

Copyright © 2013 Yao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Agrawal, “Jitter control for imaging spacecraft,” in Proceedings of the 4th International Conference on Recent Advances in Space Technologies (RAST '09), pp. 615–620, Istanbul, Turkey, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. T. Hyde, K. Q. Ha, J. D. Johnston, J. M. Howard, and G. E. Mosier, “Integrated modeling activities for the James Webb Space Telescope: optical jitter analysis,” in Optical, Infrared, and Millimeter Space Telecopes, vol. 5487 of Proceedings of SPIE, pp. 588–599, gbr, June 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Blaurock, K. Liu, L. Dewell, and J. Alexander, “Passive isolator design for jitter reduction in the Terrestrial Planet Finder Coronagraph,” in Optical Modeling and Performance Predictions II, vol. 5867-34, SPIE paper no. 5867-34, pp. 1–12, San Diego, Calif, USA, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Masterson, D. Miller, and R. Grogan, “Development of empirical and analytical reaction wheel disturbance models,” in Proceedings of the 40th AIAA/ASCE/AHS/ACS Structures, Structural Dynamics and Materials Conference, April 1999.
  5. L. P. Davis and J. F. Wilson, “Hubble space telescope reaction wheel assembly vibration isolation system. Structural dynamics and control interaction of flexible structures,” NASA Report N87-22702, 1986.
  6. J. C. Strain and S. Mittal, “Spacecraft redesign to reduce microphonic response of a VCO component,” in Proceedings of the 58th Shock and Vibration Symposium, vol. 2, pp. 167–183, NASA. Marshall Space Flight Center, 1988.
  7. K. J. Pendergast and C. J. Schauwecker, “Use of a passive reaction wheel jitter isolation system to meet the Advanced X-ray Astrophysics Facility imaging performance requirements,” in Proceedings of the Conference on Space Telescopes and Instruments V. Part 1 (of 2), pp. 1078–1094, March 1998. View at Scopus
  8. A. J. Bronowicki, “Vibration isolator for large space telescopes,” Journal of Spacecraft and Rockets, vol. 43, no. 1, pp. 45–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Kamesh, R. Pandiyan, and A. Ghosal, “Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft,” Journal of Sound and Vibration, vol. 329, no. 17, pp. 3431–3450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Lourenco, Design, Construction and Testing of an Adaptive Pendulum Tuned Mass Damper, University of Waterloo, 2011.
  11. N. Hoang, Y. Fujino, and P. Warnitchai, “Optimal tuned mass damper for seismic applications and practical design formulas,” Engineering Structures, vol. 29, no. 7, pp. 1548–1560, 2007.
  12. Q. Li, J. Fan, J. Nie, Q. Li, and Y. Chen, “Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers,” Journal of Sound and Vibration, vol. 329, no. 19, pp. 4068–4092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Q. Guo and W. Q. Chen, “Dynamic analysis of space structures with multiple tuned mass dampers,” Engineering Structures, vol. 29, no. 12, pp. 3390–3403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Basdogan, R. Grogan, A. Kissil, N. Sigrist, and L. Sievers, “Preliminary optical performance analysis of the space interferometer mission using an integrated modeling methodology,” in Proceedings of the Control of Vibration and Noise-New Millennium: International Mechanical Engineering Congress & Exposition 6th Biennial Symposium on Active Control of Vibration and Noise, Orlando, Fla, USA, November 2000.
  15. L. Dewell, N. Pedreiro, C. Blaurock, K. Liu, J. Alexander, and M. Levine, “Precision telescope pointing and spacecraft vibration isolation for the terrestrial planet finder coronagraph,” in Proceedings of the UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, pp. 1–14, San Diego, Calif, USA, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. E. Miller, P. Kirchman, and J. Sudey, “Reaction wheel operational impacts on the GOES-N jitter environment,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 3642–3653, Hilton Head Island, SC, USA, August 2007. View at Scopus
  17. K. Liu, P. Maghami, and C. Blaurock, “Reaction wheel disturbance modeling, jitter analysis, and validation tests for Solar Dynamics Observatory,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, August 2008. View at Scopus
  18. M. Luis, T. Frank, A. Satya, S. Victor, and H. Tupper, “Line of sight stabilization for the James Webb Space Telescope,” Advances in the Astronautical Sciences, vol. 121, pp. 17–30, 2005.
  19. B. Dasgupta and T. S. Mruthyunjaya, “A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator,” Mechanism and Machine Theory, vol. 33, no. 8, pp. 1135–1152, 1998, International Conference on Advances in Mechanical Engineering (ICAME) (Bangalore, 1995). View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. Z. Yao, Z. Jingrui, and X. Shijie, “Parameters design of vibration isolation platform for control moment gyroscopes,” Acta Astronautica, vol. 81, no. 2, pp. 645–659, 2012.
  21. F. Zhang, G. Duan, and M. Hou, “Integrated relative position and attitude control of spacecraft in proximity operation missions with control saturation,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 5B, pp. 3537–3551, 2012.
  22. Y. Cheng, B. Jiang, Y. Fu, and Z. Gao, “Robust observer based reliable control for satellite attitude control systems with sensor faults,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7B, pp. 4149–4160, 2011. View at Scopus
  23. Y. Zhang, J.-R. Zhang, and S.-J. Xu, “Influence of flexible solar arrays on vibration isolation platform of control moment gyroscopes,” Acta Mechanica Sinica, vol. 28, no. 5, pp. 1479–1487, 2012. View at Publisher · View at Google Scholar · View at MathSciNet