About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 628792, 10 pages
http://dx.doi.org/10.1155/2013/628792
Research Article

Maintenance Decision Based on Data Fusion of Aero Engines

1College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Department of Management, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China

Received 18 January 2013; Accepted 4 April 2013

Academic Editor: H. K. Leung

Copyright © 2013 Huawei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483–1510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Bell, Condition Based Maintenance Plus DoD Guidebook, Department of Defense, 2008.
  3. G. Niu, B. S. Yang, and M. Pecht, “Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance,” Reliability Engineering and System Safety, vol. 95, no. 7, pp. 786–796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. S. Jardine, P. M. Anderson, and D. S. Mann, “Application of the Weibull proportional hazard model to aircraft and marine engine failure data,” Quality and Reliability Engineering International, vol. 3, pp. 77–82, 1987. View at Publisher · View at Google Scholar
  5. P. J. Vlok, M. Wnek, and M. Zygmunt, “Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions,” Mechanical Systems and Signal Processing, vol. 18, no. 4, pp. 833–847, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Bunks, D. McCarthy, and T. Al-Ani, “Condition-based maintenance of machines using hidden Markov models,” Mechanical Systems and Signal Processing, vol. 14, no. 4, pp. 597–612, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Dong and D. He, “Hidden semi-markov models for machinery health diagnosis and prognosis,” Transactions of the North American Manufacturing Research Institution of SME, vol. 32, pp. 199–206, 2004.
  8. D. Lin and V. Makis, “Recursive filters for a partially observable system subject to random failure,” Advances in Applied Probability, vol. 35, no. 1, pp. 207–227, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. W. Wang, “A model to predict the residual life of rolling element bearings given monitored condition information to date,” IMA Journal Management Mathematics, vol. 13, no. 1, pp. 3–16, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. J. Vatn, P. Hokstad, and L. Bodsberg, “An overall model for maintenance optimization,” Reliability Engineering and System Safety, vol. 51, no. 3, pp. 241–257, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Vassiliadis and E. N. Pistikopoulos, “Maintenance scheduling and process optimization under uncertainty,” Computers and Chemical Engineering, vol. 25, no. 2-3, pp. 217–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Aven and I. T. Castro, “A minimal repair replacement model with two types of failure and a safety constraint,” European Journal of Operational Research, vol. 188, no. 2, pp. 506–515, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. J. Vatn and T. Aven, “An approach to maintenance optimization where safety issues are important,” Reliability Engineering and System Safety, vol. 95, no. 1, pp. 58–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Sanchez, S. Carlos, S. Martorell, and J. F. Villanueva, “Addressing imperfect maintenance modelling uncertainty in unavailability and cost based optimization,” Reliability Engineering and System Safety, vol. 94, no. 1, pp. 22–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, IEEE Service Center, Piscataway, NJ, USA, October 1995. View at Scopus