About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 649857, 6 pages
http://dx.doi.org/10.1155/2013/649857
Research Article

Accelerated Particle Swarm for Optimum Design of Frame Structures

1Marand Faculty of Engineering, University of Tabriz, Tabriz 51666-14766, Iran
2Department of Engineering, Islamic Azad University, Ahar Branch, Ahar 54516, Iran
3Department of Structural Engineering, Islamic Azad University, Shabestar Branch, Shabestar 57168-14758, Iran

Received 29 November 2012; Revised 29 December 2012; Accepted 30 December 2012

Academic Editor: Fei Kang

Copyright © 2013 S. Talatahari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kaveh and S. Talatahari, “Optimal design of skeletal structures via the charged system search algorithm,” Structural and Multidisciplinary Optimization, vol. 41, no. 6, pp. 893–911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kaveh, B. F. Azar, and S. Talatahari, “Ant colony optimization for design of space trusses,” International Journal of Space Structures, vol. 23, no. 3, pp. 167–181, 2008. View at Scopus
  3. S. Talatahari, M. Kheirollahi, C. Farahmandpour, and A. H. Gandomi, “Optimum design of truss structures using multi stage particle swarm optimization,” Neural Computing & Applications, 2012. View at Publisher · View at Google Scholar
  4. S. Chen, Y. Zheng, C. Cattani, and W. Wang, “Modeling of biological intelligence for SCM system optimization,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 769702, 10 pages, 2012. View at Zentralblatt MATH · View at MathSciNet
  5. S. Chen, Y. Wang, and C. Cattani, “Key issues in modeling of complex 3D structures from video sequences,” Mathematical Problems in Engineering, vol. 2012, Article ID 856523, 17 pages, 2012. View at Publisher · View at Google Scholar
  6. S. Chen, W. Huang, C. Cattani, and G. Altieri, “Traffic dynamics on complex networks: a survey,” Mathematical Problems in Engineering, vol. 2012, Article ID 732698, 23 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  7. F. Kang, J. Li, and Z. Ma, “Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions,” Information Sciences, vol. 181, no. 16, pp. 3508–3531, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  8. F. Kang, J. Li, and Z. Ma, “An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis,” Engineering Optimization, vol. 45, no. 2, pp. 207–223, 2013. View at Publisher · View at Google Scholar
  9. P. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance difference,” in Proceedings of the Evolutionary Programming Conference, San Diego, Calif, USA, 1998.
  10. Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 101–106, May 2001. View at Scopus
  11. Y. Liu, Z. Qin, Z. Shi, and J. Lu, “Center particle swarm optimization,” Neurocomputing, vol. 70, no. 4-6, pp. 672–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Xi, J. Sun, and W. Xu, “An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position,” Applied Mathematics and Computation, vol. 205, no. 2, pp. 751–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Jiao, Z. Lian, and X. S. Gu, “A dynamic inertia weight particle swarm optimization algorithm,” Chaos, Solitons and Fractals, vol. 37, no. 3, pp. 698–705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Yang, J. Yuan, J. Yuan, and H. Mao, “A modified particle swarm optimizer with dynamic adaptation,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1205–1213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Kaveh and S. Talatahari, “A particle swarm ant colony optimization for truss structures with discrete variables,” Journal of Constructional Steel Research, vol. 65, no. 8-9, pp. 1558–1568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kaveh and S. Talatahari, “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Fourie and A. A. Groenwold, “The particle swarm optimization algorithm in size and shape optimization,” Structural and Multidisciplinary Optimization, vol. 23, no. 4, pp. 259–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kaveh and S. Talatahari, “Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization,” in Studies in Computational Intelligence, vol. 239, pp. 159–198, Springer, Berlin, Heidelberg, 2009.
  19. A. Hadidi, A. Kaveh, B. Farahnadazar, S. Talatahari, and C. Farahmandpour, “An efficient hybrid algorithm based on particle swarm and simulated annealing for optimal design of space trusses,” International Journal of Optimization in Civil Engineering, vol. 1, no. 3, pp. 377–395, 2011.
  20. J. F. Schutte and A. A. Groenwold, “Sizing design of truss structures using particle swarms,” Structural and Multidisciplinary Optimization, vol. 25, no. 4, pp. 261–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Kang, J. Li, and Q. Xu, “Damage detection based on improved particle swarm optimization using vibration data,” Applied Soft Computing, vol. 12, no. 8, pp. 2329–2335, 2012.
  22. X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2nd edition, 2010.
  23. A. Kaveh and S. Talatahari, “Charged system search for optimal design of frame structures,” Applied Soft Computing, vol. 12, no. 1, pp. 382–393, 2012.
  24. American Institute of Steel Construction (AISC), Manual of Steel Construction Load Resistance Factor Design, AISC, Chicago, Ill, USA, 3rd edition, 2001.
  25. C. A. C. Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 11-12, pp. 1245–1287, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  26. A. Kaveh and S. Talatahari, “An improved ant colony optimization for the design of planar steel frames,” Engineering Structures, vol. 32, no. 3, pp. 864–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995. View at Scopus
  28. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, Nagoya, Japan, October 1995. View at Scopus
  29. R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC '00), pp. 84–88, July 2000. View at Scopus
  30. A. H. Gandomi, G. J. Yun, X. S. Yang, and S. Talatahari, “Combination of chaos and accelerated particle swarm optimization,” Communications in Nonlinear Science and Numerical Simulations, vol. 18, pp. 327–340, 2013.
  31. C. V. Camp, S. Pezeshk, and G. Cao, “Optimized design of two-dimensional structures using a genetic algorithm,” Journal of Structural Engineering, vol. 124, no. 5, pp. 551–559, 1998. View at Scopus
  32. A. Kaveh and S. Shojaee, “Optimal design of skeletal structures using ant colony optimization,” International Journal for Numerical Methods in Engineering, vol. 70, no. 5, pp. 563–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kaveh and S. Talatahari, “A discrete Big Bang—Big Crunch algorithm for optimal design of skeletal structures,” Asian Journal of Civil Engineering, vol. 11, no. 1, pp. 103–122, 2010. View at Scopus
  34. A. Kaveh and S. Talatahari, “Optimum design of skeletal structures using imperialist competitive algorithm,” Computers and Structures, vol. 88, no. 21-22, pp. 1220–1229, 2010. View at Publisher · View at Google Scholar · View at Scopus