About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 726721, 10 pages
http://dx.doi.org/10.1155/2013/726721
Research Article

Fractional Resonance-Based Filters

1Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
2Department of Electrical and Computer Engineering, University of Sharjah, P.O. Box 27272, Sharjah, UAE

Received 17 September 2012; Accepted 20 December 2012

Academic Editor: József Kázmér Tar

Copyright © 2013 Todd J. Freeborn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Elwakil, “Fractional-order circuits and systems: an emerging interdisciplinary research area,” IEEE Circuits and Systems Magazine, vol. 10, no. 4, pp. 40–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Tenreiro Machado, I. S. Jesus, A. Galhano, and J. Boaventura Cunha, “Fractional order electromagnetics,” Signal Processing, vol. 86, no. 10, pp. 2637–2644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Sebaa, Z. E. A. Fellah, W. Lauriks, and C. Depollier, “Application of fractional calculus to ultrasonic wave propagation in human cancellous bone,” Signal Processing, vol. 86, no. 10, pp. 2668–2677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot, and P. Roy, “Fractional system identification for lead acid battery state of charge estimation,” Signal Processing, vol. 86, no. 10, pp. 2645–2657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Gabano and T. Poinot, “Fractional modelling and identification of thermal systems,” Signal Processing, vol. 91, no. 3, pp. 531–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order sinusoidal oscillators: design procedure and practical examples,” IEEE Transactions on Circuits and Systems, vol. 55, no. 7, pp. 2051–2063, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  7. A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “On the generalization of second-order filters to the fractional-order domain,” Journal of Circuits, Systems and Computers, vol. 18, no. 2, pp. 361–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Soltan, A. G. Radwan, and A. M. Soliman, “Butterworth passive filter in the fractional order,” in Proceedings of the International Conference on Microelectronics (ICM '11), pp. 1–5, Hammamet, Tunisia, 2011. View at Publisher · View at Google Scholar
  9. P. Ahmadi, B. Maundy, A. S. Elwakil, and L. Belostostski, “High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach,” IET Circuits, Devices & Systems, vol. 6, no. 3, pp. 187–197, 2012.
  10. A. Lahiri and T. K. Rawat, “Noise analysis of single stage fractional-order low pass filter using stochastic and fractional calculus,” ECTI Transactions on Electronics and Communications, vol. 7, no. 2, pp. 136–143, 2009.
  11. A. Radwan, “Stability analysis of the fractional-order RLβCα circuit,” Journal of Fractional Calculus and Applications, vol. 3, no. 1, pp. 1–15, 2012.
  12. T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Field programmable analogue array implementations of fractional step filters,” IET Circuits, Devices & Systems, vol. 4, no. 6, pp. 514–524, 2010.
  13. B. Maundy, A. S. Elwakil, and T. J. Freeborn, “On the practical realization of higher-order filters with fractional stepping,” Signal Processing, vol. 91, no. 3, pp. 484–491, 2011.
  14. T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Fractional-step Tow-Thomas biquad filters,” Nonlinear Theory and Its Applications, IEICE (NOLTA), vol. 3, no. 3, pp. 357–374, 2012.
  15. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, vol. 198, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  16. M. Nakagawa and K. Sorimachi, “Basic characteristics of a fractance device,” IEICE—Transactions on Fundamentals of Electronics, Communications and Computer Sciences E, vol. 75, pp. 1814–1819, 1992.
  17. M. Sivarama Krishna, S. Das, K. Biswas, and B. Goswami, “Fabrication of a fractional order capacitor with desired spec- ifications: a study on process identification and characterization,” IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 4067–4073, 2011.
  18. T. Haba, G. Ablart, T. Camps, and F. Olivie, “Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon,” Chaos, Solitons Fractals, vol. 24, no. 2, pp. 479–490, 2005.
  19. J. J. Quintana, A. Ramos, and I. Nuez, “Identification of the fractional impedance of ultracapacitors,” in Proceedings of the 2nd Workshop on Fractional Differentiation and Its Applications (IFAC '06), pp. 289–293, 2006.
  20. A. Dzieliński, G. Sarwas, and D. Sierociuk, “Comparison and validation of integer and fractional order ultracapacitor models,” Advances in Difference Equations, vol. 2011, article 11, 2011. View at MathSciNet
  21. I. Podlubny, I. Petráš, B. M. Vinagre, P. O'Leary, and L'. Dorčák, “Analogue realizations of fractional-order controllers,” Nonlinear Dynamics: An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, vol. 29, no. 1–4, pp. 281–296, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  22. B. Krishna and K. Reddy, “Active and passive realization of fractance device of order 1/2,” Active and Passive Electronic Components, vol. 2008, Article ID 369421, 5 pages, 2008. View at Publisher · View at Google Scholar
  23. R. Schaumann and M. E. Van Valkenburg, Design of Analog Filters, Oxford University Press, 2001.
  24. L. T. Bruton, “Network transfer functions using the concept of frequency-dependent negative resistance,” IEEE Transactions on Circuit Theory, vol. CT-16, no. 3, pp. 406–408, 1969.