About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 732643, 5 pages
http://dx.doi.org/10.1155/2013/732643
Research Article

On Homogeneous Production Functions with Proportional Marginal Rate of Substitution

1Department of Information Technology, Mathematics and Physics, Petroleum-Gas University of Ploieşti, Bulevardul Bucureşti No. 39, 100680 Ploieşti, Romania
2Faculty of Mathematics and Computer Science, Research Center in Geometry, Topology and Algebra, University of Bucharest, Street Academiei No. 14, Sector 1, 70109 Bucharest, Romania
3Department of Mathematical Modelling, Economic Analysis and Statistics, Petroleum-Gas University of Ploieşti, Bulevardul Bucureşti No. 39, 100680 Ploieşti, Romania

Received 11 December 2012; Accepted 10 February 2013

Academic Editor: Gradimir Milovanovic

Copyright © 2013 Alina Daniela Vîlcu and Gabriel Eduard Vîlcu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. Adinya, B. O. Offem, and G. U. Ikpi, “Application of a stochastic frontier production function for measurement and comparision of technical efficiency of mandarin fish and clown fish production in lowlands reservoirs, ponds and dams of Cross River State, Nigeria,” Journal of Animal and Plant Sciences, vol. 21, no. 3, pp. 595–600, 2011.
  2. E. Chassot, D. Gascuel, and A. Colomb, “Impact of trophic interactions on production functions and on the ecosystem response to fishing: a simulation approach,” Aquatic Living Resources, vol. 18, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. T. Cooper and E. Cohn, “Estimation of a frontier production function for the South Carolina educational process,” Economics of Education Review, vol. 16, no. 3, pp. 313–327, 1997. View at Scopus
  4. M. E. Da Silva Freire and J. J. R. F. Da Silva, “The application of production functions to the higher education system—some examples from Portuguese universities,” Higher Education, vol. 4, no. 4, pp. 447–460, 1975. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Boussard, “Bio physical models as detailed engineering production functions,” in Bio-Economic Models Applied to Agricultural Systems, pp. 15–28, Springer, Dordrecht, The Netherland, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  6. T. G. Gowing, “Technical change and scale economies in an engineering production function: The case of steam electric power,” Journal of Industrial Economics, vol. 23, no. 2, pp. 135–152, 1974.
  7. J. Marsden, D. Pingry, and A. Whinston, “Engineering foundations of production functions,” Journal of Economic Theory, vol. 9, no. 2, pp. 124–140, 1974. View at Scopus
  8. D. L. Martin, D. G. Watts, and J. R. Gilley, “Model and production function for irrigation management,” Journal of Irrigation and Drainage Engineering, vol. 110, no. 2, pp. 149–164, 1984. View at Scopus
  9. C. W. Cobb and P. H. Douglas, “A theory of production,” American Economic Review, vol. 18, pp. 139–165, 1928.
  10. A. D. Vîlcu and G. E. Vîlcu, “On some geometric properties of the generalized CES production functions,” Applied Mathematics and Computation, vol. 218, no. 1, pp. 124–129, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. G. E. Vîlcu, “A geometric perspective on the generalized Cobb-Douglas production functions,” Applied Mathematics Letters, vol. 24, no. 5, pp. 777–783, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. S. K. Mishra, “A brief history of production functions,” The IUP Journal of Managerial Economics, vol. 8, no. 4, pp. 6–34, 2010.
  13. C. A. Ioan and G. Ioan, “A generalization of a class of production functions,” Applied Economics Letters, vol. 18, pp. 1777–1784, 2011.
  14. L. Losonczi, “Production functions having the CES property,” Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, vol. 26, no. 1, pp. 113–125, 2010. View at MathSciNet
  15. B.-Y. Chen, “Classification of h-homogeneous production functions with constant elasticity of substitution,” Tamkang Journal of Mathematics, vol. 43, no. 2, pp. 321–328, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  16. B.-Y. Chen, “On some geometric properties of h-homogeneous production functions in microeconomics,” Kragujevac Journal of Mathematics, vol. 35, no. 3, pp. 343–357, 2011. View at MathSciNet
  17. B.-Y. Chen, “On some geometric properties of quasi-sum production models,” Journal of Mathematical Analysis and Applications, vol. 392, no. 2, pp. 192–199, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. B.-Y. Chen, “Geometry of quasy-sum production functions with constant elasticity of substitution property,” Journal of Advanced Mathematical Studies, vol. 5, no. 2, pp. 90–97, 2012.
  19. B.-Y. Chen, “Classification of homothetic functions with constant elasticity of substitution and its geometric applications,” International Electronic Journal of Geometry, vol. 5, no. 2, pp. 67–78, 2012.
  20. B.-Y. Chen and G. E. V. Vîlcu, “Geometric classifications of homogeneous production functions,” submitted.