About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 750896, 7 pages
http://dx.doi.org/10.1155/2013/750896
Research Article

Development of a Refined Rollover Model That Recognizes the Effects of Suspension and Tire Deformation

Department of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received 13 November 2012; Accepted 15 December 2012

Academic Editor: Tsung-Chih Lin

Copyright © 2013 Xiaowen Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Highway Traffic Safety Administration, “An analysis of motor vehicle rollover crashes and injury outcomes,” DOT HS 810 741, 2007.
  2. A. Hac, “Rollover stability index including effects of suspension design,” SAE Paper 2002-01-0965, 2002.
  3. N. Bouton, R. Lenain, B. Thuilot, and J. C. Fauroux, “A rollover indicator based on the prediction of the load transfer in presence of sliding: application to an all terrain vehicle,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '07), pp. 1158–1163, Roma, Italy, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Yi, J. Yoon, and D. Kim, “Model-based estimation of vehicle roll state for detection of impending vehicle rollover,” in Proceedings of the American Control Conference (ACC '07), pp. 1624–1629, New York, NY, USA, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Seongjin Yim, “Design of a preview controller for vehicle rollover prevention,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4217–4226, 2011.
  6. R. Mathieu, L. Roland, T. Benoit, and D. Christophe, “On-line estimation of a stability metric including grip conditions and slope: application to rollover prevention for All-Terrain Vehicles,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS '11), pp. 4569–4574, 2011. View at Publisher · View at Google Scholar
  7. B.-C. Chen and H. Peng, “Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations,” Vehicle System Dynamics, vol. 36, no. 4-5, pp. 359–389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. B. Lu, S. B. Choi, Y. N. Li, M. S. Seong, and J. S. Han, “Global integrated control of vehicle suspension and chassis key subsystems,” Proceedings of the Institution of Mechanical Engineers D, vol. 224, no. 4, pp. 423–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Solmaz, M. Corless, and R. Shorten, “A methodology for the design of robust rollover prevention controllers for automotive vehicles: part 1-differential braking,” in Proceedings of the 45th IEEE Conference on Decision and Control 2006 (CDC '06), pp. 1739–1744, San Diego, Calif, USA, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Cherian, R. Shenoy, and T. D. Gillespie, “Model-Based Design of a SUV anti-rollover control system,” SAE Paper 2008-01-0579, 2008.
  11. V. Tsourapas, D. Piyabongkarn, A. C. Williams, and R. Rajamani, “New method of identifying real-time predictive lateral load transfer ratio for rollover prevention systems,” in Proceedings of the American Control Conference (ACC '09), pp. 439–444, St. Louis, Mo, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Peiman, “Fuzzy logic controller designing of an active roll control system for medium and large size vehicles,” Applied Mechanics and Materials, vol. 110–116, pp. 4845–4855, 2012. View at Publisher · View at Google Scholar
  13. H. Peiman, “Fuzzy logic controller designing of an active roll control system for medium and large size vehicles,” in Proceedings of the 2nd International Conference on Mechanical and Aerospace Engineering (ICMAE '11), July 2011.
  14. J. Garrick Forkenbrock, W. Riley Garrott, M. Mark Heitz, and B. C. O’Harra, “An experimental examination of J-Turn and Fishhook manenvers that may induce on-road, untripped, light vehicle rollover,” SAE Paper 2003-01-1008, 2003.
  15. R. C. Lin, D. Cebon, and D. J. Cole, “Active roll control of articulated vehicles,” Vehicle System Dynamics, vol. 26, no. 1, pp. 17–43, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Thomas Gillespie, Fundamentals of Vehicle Dynamics, SAE International, 1992.