About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 768658, 7 pages
http://dx.doi.org/10.1155/2013/768658
Research Article

Energy Efficiency of a Greenhouse for the Conservation of Forestry Biodiversity

1DAFNE, University of Tuscia, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy
2CIRDER, University of Tuscia, Via Cavour 23, 01028 Orte, Italy

Received 21 August 2012; Accepted 1 November 2012

Academic Editor: Carlo Cattani

Copyright © 2013 Alvaro Marucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Carlini and S. Castellucci, “Modelling and simulation for energy production parametric dependence in greenhouses,” Mathematical Problems in Engineering, vol. 2010, Article ID 590943, 28 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Carlini, S. Castellucci, M. Guerrieri, and T. Honorati, “Stability and control for energy production parametric dependence,” Mathematical Problems in Engineering, vol. 2010, Article ID 842380, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. B. Piotto, V. Giancanelli, and S. Ercoles, La conservazione ex situ della biodiversità delle specie vegetali spontanee e coltivate in Italia. Stato dell’arte, criticità e azioni da compiere, Istituto Superiore per la Protezione e la Ricerca (ISPRA ’10), Rome, Italy, 2010.
  4. L. Thomson, L. Graudal, and E. Kjær, “Conservation of genetic resources in their natural environment: in managed natural forests and protected areas (in situ),” in Forest Genetic Resources Conservation and Management, FAO, DFSC, and IPGRI, Eds., vol. 2, pp. 1–3, International Plant Genetic Resources Institute, Rome, Italy, 2001.
  5. W. Amaral and A. Yanchuk, “Integrated approaches for ex situ conservation and use of forest genetic diversity: in plantations and genebanks (ex situ),” in Forest Genetic Resources Conservation and Management, FAO, DFSC, and IPGRI, Eds., vol. 3, pp. 1–3, International Plant Genetic Resources Institute, Rome, Italy, 2004.
  6. A. Marucci and A. Cappuccini, “The characteristics of the greenhouses for the conservation of forest biodiversity in the Mediterranean environment,” in Proceedings of the International Conference on “The Role of Biobanks for Research and Protection of Forest Biodiversity” (MFDB '12), University of Tuscia, Viterbo, Italy, April 2012.
  7. P. Piussi, Selvicoltura Generale, UTET, 1994.
  8. A. Mistriotis, C. Arcidiacono, P. Picuno, G. P. A. Bot, and G. Scarascia-Mugnozza, “Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds,” Agricultural and Forest Meteorology, vol. 88, no. 1–4, pp. 121–135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Carlini, T. Honorati, and S. Castellucci, “Photovoltaic greenhouses: comparison of optical and thermal behaviour for energy savings,” Mathematical Problems in Engineering, vol. 2012, Article ID 743764, 10 pages, 2012. View at Publisher · View at Google Scholar
  10. Y. Rouphael, M. T. Cardarelli, N. Ajouz, A. Marucci, and G. Colla, “Estimation of eggplant leaf number using thermal time model,” Journal of Food, Agriculture and Environment, vol. 8, no. 2, pp. 847–850, 2010. View at Scopus
  11. M. Carlini, M. Villarini, S. Esposto, and M. Bernardi, “Performance analysis of greenhouses with integrated photovoltaic modules,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA '10), vol. 6017 of Lecture Notes in Computer Science, pp. 206–214, 2010.
  12. S. Holst, “Heating load of a building model in TRNSYS with different heating systems,” ZAE Bayern, Abt. 4, TRNSYS-User Day, Stuttgart, Germany, 1993.
  13. J. E. Braun and J. C. Mitchell, “Solar geometry for fixed and tracking surfaces,” Solar Energy, vol. 31, no. 5, pp. 439–444, 1983. View at Publisher · View at Google Scholar
  14. D. T. Reindl, W. A. Beckman, and J. A. Duffie, “Diffuse fraction correlations,” Solar Energy, vol. 45, no. 1, pp. 1–7, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Marucci and B. Pagniello, “Simulation of the growth and the production of the tomato in typical greenhouses of the Mediterranean environment,” Journal of Food, Agriculture and Environment, vol. 9, no. 3-4, pp. 407–411, 2011.
  16. E. Campiglia, G. Colla, R. Mancinelli, Y. Rouphael, and A. Marucci, “Energy balance of intensive vegetable cropping systems in central Italy,” Acta Horticulturae, vol. 747, pp. 185–191, 2007.
  17. A. Marucci, E. Campiglia, G. Colla, and B. Pagniello, “Environmental impact of fertilization and pesticide application in vegetable cropping systems under greenhouse and open field conditions,” Journal of Food, Agriculture and Environment, vol. 9, no. 3-4, pp. 840–846, 2011.
  18. H. Laukamp, “Inverter for photovoltaic systems (in German). User-written TRNSYS source code,” Fraunhofer-Institute für Solare Energiesysteme, Freiburg im Breisgau, Germany, 1988.