About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 838102, 9 pages
http://dx.doi.org/10.1155/2013/838102
Research Article

Simultaneous Topology, Shape, and Sizing Optimisation of Plane Trusses with Adaptive Ground Finite Elements Using MOEAs

1Department of Engineering Management, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
2Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

Received 4 October 2012; Revised 7 January 2013; Accepted 8 January 2013

Academic Editor: Sheng-yong Chen

Copyright © 2013 Norapat Noilublao and Sujin Bureerat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lu, S. Chen, and Y. Zheng, “Artificial intelligence in civil engineering,” Mathematical Problems in Engineering, vol. 2012, Article ID 145974, 22 pages, 2012. View at Publisher · View at Google Scholar
  2. C. Cattani, S. Chen, and G. Aldashev, “Information and modeling in complexity,” Mathematical Problems in Engineering, vol. 2012, Article ID 868413, 3 pages, 2012. View at Publisher · View at Google Scholar
  3. A. R. Yildiz, “Comparison of evolutionary-based optimization algorithms for structural design optimization,” Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 327–333, 2013. View at Publisher · View at Google Scholar
  4. A. R. Yildiz and K. N. Solanki, “Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach,” International Journal of Advanced Manufacturing Technology, vol. 59, pp. 367–376, 2012. View at Publisher · View at Google Scholar
  5. A. F. Ulusoy and F. Erbatur, “Discrete and continuous structural optimisation using evolution strategies,” in Proceedings of the 3rd International Conference on Engineering Computational Technology (ICECT '03), B. H. V. Topping and Z. Bittnar, Eds., pp. 163–164, Civil-Comp press, Edinburgh, UK, 2002.
  6. A. R. Yildiz and K. Saitou, “Topology synthesis of multicomponent structural assemblies in continuum domains,” Journal of Mechanical Design, vol. 133, no. 1, Article ID 011008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Pholdee and S. Bureerat, “Performance enhancement of multiobjective evolutionary optimizers for truss design using an approximate gradient,” Computers and Structures, vol. 106-107, pp. 115–124, 2012. View at Publisher · View at Google Scholar
  8. I. Durgun and A. R. Yildiz, “Structural design optimization of vehicle components using Cuckoo search algorithm,” Materials Testing, vol. 54, no. 3, pp. 185–188, 2012.
  9. S. Chen, Y. Zheng, C. Cattani, and W. Wang, “Modeling of biological intelligence for SCM system optimization,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 769702, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Zirour, C. Y. Liong, and W. R. Ismail, “Genetic algorithm for a quay management problem,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 9, pp. 2257–2263, 2011.
  11. S. Y. Chen and Y. F. Li, “Automatic sensor placement for model-based robot vision,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 1, pp. 393–408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Yildiz, “A novel hybrid immune algorithm for global optimization in design and manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 261–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Yildiz, “A new hybrid bee colony optimization approach for robust optimal design and manufacturing,” Applied Soft Computing. In press.
  14. V. Kelner, F. Capitanescu, O. Léonard, and L. Wehenkel, “A hybrid optimization technique coupling an evolutionary and a local search algorithm,” Journal of Computational and Applied Mathematics, vol. 215, no. 2, pp. 448–456, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. A. R. Yildiz, “A new design optimization framework based on immune algorithm and Taguchi's method,” Computers in Industry, vol. 60, no. 8, pp. 613–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kanyakam and S. Bureerat, “Comparative performance of surrogate-assisted MOEAs for geometrical design of pin-fin heat sinks,” Applied Mathematics, vol. 2012, Article ID 534783, 14 pages, 2012. View at Publisher · View at Google Scholar
  17. T. Kunakote and S. Bureerat, “Multi-objective topology optimization using evolutionary algorithms,” Engineering Optimization, vol. 43, no. 5, pp. 541–557, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. W. Achtziger, “On simultaneous optimization of truss geometry and topology,” Structural and Multidisciplinary Optimization, vol. 33, no. 4-5, pp. 285–304, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. W. Tang, L. Tong, and Y. Gu, “Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables,” International Journal for Numerical Methods in Engineering, vol. 62, no. 13, pp. 1737–1762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Shea and I. F. C. Smith, “Improving full-scale transmission tower design through topology and shape optimization,” Journal of Structural Engineering, vol. 132, no. 5, pp. 781–790, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. M. Chan and K. M. Wong, “Structural topology and element sizing design optimisation of tall steel frameworks using a hybrid OC-GA method,” Structural and Multidisciplinary Optimization, vol. 35, no. 5, pp. 473–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zhu, W. Zhang, P. Beckers, Y. Chen, and Z. Guo, “Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique,” Structural and Multidisciplinary Optimization, vol. 36, no. 1, pp. 29–41, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. M. Giger and P. Ermanni, “Evolutionary truss topology optimization using a graph-based parameterization concept,” Structural and Multidisciplinary Optimization, vol. 32, no. 4, pp. 313–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Su, X. Wang, L. Gui, and Z. Fan, “Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy,” Structural and Multidisciplinary Optimization, vol. 43, no. 2, pp. 275–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Togan and A. Daloglu, “Optimization of 3d trusses with adaptive approach in genetic algorithms,” Engineering Structures, vol. 28, pp. 1019–1027, 2006. View at Publisher · View at Google Scholar
  26. H. Rahami, A. Kaveh, and Y. Gholipour, “Sizing, geometry and topology optimization of trusses via force method and genetic algorithm,” Engineering Structures, vol. 30, no. 9, pp. 2360–2369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Hasanc and F. Erbatur, “Layout optimization of trusses using simulated annealing,” Advances in Engineering Software, vol. 33, pp. 681–696, 2002. View at Publisher · View at Google Scholar
  28. C. Noilublao and S. Bureerat, “Simultaneous topology shape and sizing optimisation of skeletal structures using multiobjective evolutionary algorithms,” in Evolutionary Computation, pp. 487–580, 2009.
  29. T. Hagishita and M. Ohsaki, “Topology optimization of trusses by growing ground structure method,” Structural and Multidisciplinary Optimization, vol. 37, no. 4, pp. 377–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Asadpoure, M. Tootkaboni, and J. K. Guest, “Robust topology optimization of structures with uncertainties in stiffness—application to truss structures,” Computers and Structures, vol. 89, no. 11-12, pp. 1131–1141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Beckers and C. Fleury, “A primal-dual approach in truss topology optimization,” Computers and Structures, vol. 64, no. 1–4, pp. 77–88, 1997. View at Scopus
  32. I. Hajirasouliha, K. Pilakoutas, and H. Moghaddam, “Topology optimization for the seismic design of truss-like structures,” Computers and Structures, vol. 89, no. 7-8, pp. 702–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Noilublao and S. Bureerat, “Topology and sizing optimization of trusses with adaptive ground finite elements using multiobjective PBIL,” Advanced Materials Research, vol. 308–310, pp. 1116–1121, 2011.
  34. S. Silih, M. Premrov, and S. Kravanja, “Optimum design of plane timber trusses considering joint flexibility,” Engineering Structures, vol. 27, no. 1, pp. 145–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Gil and A. Andreu, “Shape and cross-section optimization of a truss structure,” Computers and Structures, vol. 79, no. 7, pp. 681–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Karkauskas and A. Norkus, “Truss optimization under stiffness, stability constraints and random loading,” Mechanics Research Communications, vol. 33, no. 2, pp. 177–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Kaveh and S. Talatahari, “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. C. Lemonge, H. J. C. Barbosa, A. L. G. A. Coutinho, and C. C. H. Borges, “Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures,” Engineering Structures, vol. 33, no. 2, pp. 433–444, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Noiluplao and S. Bureerat, “Simultaneous topology and shape optimisation of a 3D framework structure using simulated annealing,” in Proceedings of the Technology and Innovation for Sustainable Development Conference (TISD '08), Faculty of Engineering, Khon Kaen University, January 2008.
  40. P. Martínez, P. Martí, and O. M. Querin, “Growth method for size, topology, and geometry optimization of truss structures,” Structural and Multidisciplinary Optimization, vol. 33, no. 1, pp. 13–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Zhou, N. Pagaldipti, H. L. Thomas, and Y. K. Shyy, “An integrated approach to topology, sizing, and shape optimization,” Structural and Multidisciplinary Optimization, vol. 26, no. 5, pp. 308–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Sokol, “A 99 line code for discretized Michell truss optimization written in Mathematica,” Structural and Multidisciplinary Optimization, vol. 43, no. 2, pp. 181–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization,” in Evolutionary Methods for Design, Optimization and Control, Barcelona, Spain, 2002.
  44. S. Bureerat and S. Srisomporn, “Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithm,” Engineering Optimization, vol. 42, no. 4, pp. 305–323, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  45. S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-based multiobjective optimization algorithm: AMOSA,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 3, pp. 269–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Reyes-Sierra and C. A. C. Coello, “Multi-objective particle swarm optimizers: a survey of the state-of-the-art,” International Journal of Computational Intelligence Research, vol. 2, pp. 287–308, 2006. View at MathSciNet
  47. T. Aittokoski and K. Miettinen, “Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA,” Optimization Methods and Software, vol. 25, no. 6, pp. 841–858, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  48. E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999. View at Scopus
  49. W. A. Bennage and A. K. Dhingra, “Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing,” International Journal for Numerical Methods in Engineering, vol. 38, no. 16, pp. 2753–2773, 1995. View at Scopus
  50. S. Bureerat and J. Limtragool, “Performance enhancement of evolutionary search for structural topology optimisation,” Finite Elements in Analysis and Design, vol. 42, no. 6, pp. 547–566, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  51. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the Pareto archived evolution strategy,” Evolutionary computation, vol. 8, no. 2, pp. 149–172, 2000. View at Scopus
  52. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization,” KanGAL Report No. 200002, Kanpur Genetic Algorithms Laboraotry (KanGAL), Indian Institute of Technology, Kanpur, India, 2000.