About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 913538, 8 pages
http://dx.doi.org/10.1155/2013/913538
Research Article

A Compound Fuzzy Disturbance Observer Based on Sliding Modes and Its Application on Flight Simulator

1School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Jilin 130033, China

Received 2 December 2012; Accepted 28 January 2013

Academic Editor: Peng Shi

Copyright © 2013 Yunjie Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Liu and L. Er, “Disturbance observer based robust tracking control of high precision flight simulator,” Journal of Beijing University of Aeronautics and Astronautics, vol. 29, no. 2, pp. 181–184, 2003 (Chinese). View at Scopus
  2. T. R. Grochmal and A. F. Lynch, “Precision tracking of a rotating shaft with magnetic bearings by nonlinear decoupled disturbance observers,” IEEE Transactions on Control Systems Technology, vol. 15, no. 6, pp. 1112–1121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K.-S. Kim, K.-H. Rew, and S. Kim, “Disturbance observer for estimating higher order disturbances in time series expansion,” IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1905–1911, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  4. T. Umeno, T. Kaneko, and Y. Hori, “Robust servosystem design with two degrees of freedom and its application of novel motion control of robot manipulators,” IEEE Transactions on Industrial Electronics, vol. 40, no. 5, pp. 473–485, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zeng and M. G. Singh, “Approximation theory of fuzzy systems-MIMO case,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 219–235, 1995. View at Publisher · View at Google Scholar
  6. L. Wu, X. Su, P. Shi, and J. Qiu, “Model approximation for discrete-time state-delay systems in the TS fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Cho, C. W. Ting, and C. Quek, “Thermal facial pattern recognition for personal verification using fuzzy cmac model,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 1, pp. 203–222, 2011. View at Scopus
  8. M. J. Wang and M. F. Yang, “Application of signed distances method to integrate linear programming for fuzzy multi-objective project management,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 1, pp. 237–252, 2011. View at Scopus
  9. T. Niknam, H. D. Mojarrad, and M. Nayeripour, “A new hybrid fuzzy adaptive particle swarm optimization for non-convex economic dispatch,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 1, pp. 189–202, 2011. View at Scopus
  10. X. Su, P. Shi, L. Wu, and Y.-D. Song, “A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays,” IEEE Transactions on Fuzzy Systems, 2012. View at Publisher · View at Google Scholar
  11. L. Wu, X. Su, P. Shi, and J. Qiu, “A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41, no. 1, pp. 273–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Bahari, A. Karsaz, and N. Pariz, “High maneuvering target tracking using a novel hybrid Kalman filter-fuzzy logic architecture,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 2, pp. 501–510, 2011. View at Scopus
  13. X. Su, P. Shi, L. Wu, and Y.-D. Song, “A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1114–1129, 2012. View at Publisher · View at Google Scholar
  14. E. Kim, “A fuzzy disturbance observer and its application to control,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 1, pp. 77–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. B. S. Chen, H. J. Uang, and C. S. Tseng, “Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 4, pp. 538–552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Ordonez and K. M. Passino, “Stable multi-input multi-output adaptive fuzzy/neural control,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 3, pp. 345–353, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Lin, S. W. Chang, and C. H. Hsu, “Robust adaptive fuzzy sliding mode control for a class of uncertain discrete-time nonlinear systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 1, pp. 347–359, 2012.
  18. Q. Khan, A. I. Bhatti, M. Iqbal, and Q. Ahmed, “Dynamic integral sliding mode control for SISO uncertain nonlinear systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 7, pp. 4621–4633, 2012.
  19. Y. Wu, W. Le, and D. Tian, “Application of sliding mode control based on disturbance observer on high performance flight motion simulator,” in Proceedings of the IEEE International Conference on Automation and Logistics (ICAL '07), pp. 2695–2699, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Hace, K. Jezernik, and A. Sabanovic, “SMC with disturbance observer for a linear belt drive,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3402–3412, 2007. View at Publisher · View at Google Scholar
  21. Z. L. He, J. F. Wu, G. H. Sun, and C. Gao, “State estimation and sliding mode control of uncertain switched hybrid systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 10, pp. 7143–7156, 2012.
  22. K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer's guide to sliding mode control,” IEEE Transactions on Control Systems Technology, vol. 7, no. 3, pp. 328–342, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Chen, S. Komada, and T. Fukuda, “Design of a nonlinear disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 429–437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Lopez, O. C. Nieto, and J. I. C. Oria, “Non-parametric modeling of uncertain hyperbolic partial differential equations using pseudo-high order sliding mode observers,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 3, pp. 1501–1521, 2012.
  25. M. Zhihong, X. H. Yu, K. Eshraghian, and M. Palaniswami, “A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 2403–2408, December 1995. View at Scopus
  26. V. Panwar, “Asymptotic trajectory tracking for a robot manipulator using RBF neural network and adaptive bound on disturbances,” in Proceedings of the International Conference on Mechanical and Electrical Technology (ICMET '10), pp. 156–160, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Jamaludin, H. van Brussel, and J. Swevers, “Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3848–3853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Tian, D. Yashiro, and K. Ohnishi, “New nonlinear tracking differential-estimators: theory and practice,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 12, pp. 8257–8271, 2012.