About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 945030, 12 pages
http://dx.doi.org/10.1155/2013/945030
Research Article

Minimum Fuel Low-Thrust Transfers for Satellites Using a Permanent Magnet Hall Thruster

1DMC, Space Mechanics and Control Division, National Institute for Space Research (INPE), Avenida dos Astronautas 1758, 12227-010 São José dos Campos, SP, Brazil
2Universidade de Brasília, Campus Darcy Ribeiro, Plano Piloto, 70910-900 Asa Norte, DF, Brazil

Received 12 October 2012; Revised 9 November 2012; Accepted 14 November 2012

Academic Editor: Vivian Gomes

Copyright © 2013 Thais Carneiro Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Lawden, “Minimal rocket trajectories,” ARS Journal, vol. 23, no. 6, pp. 360–382, 1953.
  2. D. F. Lawden, “Fundamentals of space navigation,” Journal of the British Interplanetary Society, vol. 13, pp. 87–101, 1954.
  3. V. V. Beletsky and V. A. Egorov, “Interplanetary flights with constant output engines,” Cosmic Research, vol. 2, no. 3, pp. 303–330, 1964.
  4. A. A. Sukhanov, “Optimization of flights with low thrust,” Cosmic Research, vol. 37, no. 2, pp. 182–191, 1999. View at Scopus
  5. A. A. Sukhanov, “Optimization of low-thrust interplanetary transfers,” Cosmic Research, vol. 38, no. 6, pp. 584–587, 2000. View at Scopus
  6. A. A. Sukhanov and A. F. B. A. Prado, “A modification of the method of transporting trajectory,” Cosmic Research, vol. 42, no. 1, pp. 107–112, 2004.
  7. A. A. Sukhanov and A. F. B. A. Prado, “Optimization of low thrust transfers in the three body problem,” Cosmic Research, vol. 46, no. 5, pp. 440–451, 2008.
  8. A. A. Sukhanov and A. F. B. A. Prado, “Optimization of transfers under constraints on the thrust direction: I,” Cosmic Research, vol. 45, no. 5, pp. 417–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Sukhanov and A. F. B. A. Prado, “Optimization of transfers under constraints on the thrust direction: II,” Cosmic Research, vol. 46, no. 1, pp. 49–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Fernandes and F. D. C. Carvalho, “A first-order analytical theory for optimal low-thrust limited-power transfers between arbitrary elliptical coplanar orbits,” Mathematical Problems in Engineering, vol. 2008, Article ID 525930, 30 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Boucher, “Electrical propulsion for control of stationary satellites,” Journal of Spacecraft and Rockets, vol. 1, no. 2, pp. 164–169, 1964.
  12. D. N. Bowditch, “Application of magnetic-expansion plasma thrusters to satellite station keeping and attitude control missions,” in Proceedings of the 4th Electric Propulsion Conference AIAA-1964-677, pp. 64–677, The American Institute of Aeronautics and Astronautics, Philadelphia, Pa, USA, Augest-September 1964.
  13. S. R. Oleson, R. M. Myers, C. A. Kluever, J. P. Riehl, and F. M. Curran, “Advanced propulsion for geostationary orbit insertion and north-south station keeping,” Journal of Spacecraft and Rockets, vol. 34, no. 1, pp. 22–28, 1997. View at Scopus
  14. T. A. Ely and K. C. Howell, “East-west stationkeeping of satellite orbits with resonant tesseral harmonics,” Acta Astronautica, vol. 46, no. 1, pp. 1–15, 2000.
  15. C. Circi, “Simple strategy for geostationary stationkeeping maneuvers using solar sail,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 2, pp. 249–253, 2005. View at Scopus
  16. P. Romero, J. M. Gambi, and E. Patiño, “Stationkeeping manoeuvres for geostationary satellites using feedback control techniques,” Aerospace Science and Technology, vol. 11, no. 2-3, pp. 229–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Gomes and A. F. B. A. Prado, “Low-thrust out-of-plane orbital station-keeping maneuvers for satellites,” Mathematical Problems in Engineering, vol. 2012, Article ID 532708, 14 pages, 2012. View at Publisher · View at Google Scholar
  18. B. L. Pierson and C. A. Kluever, “Three-stage approach to optimal low-thrust earth-moon trajectories,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 6, pp. 1275–1282, 1994. View at Scopus
  19. Y. J. Song, S. Y. Park, K. H. Choi, and E. S. Sim, “A lunar cargo mission design strategy using variable low thrust,” Advances in Space Research, vol. 43, no. 9, pp. 1391–1406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Fazelzadeh and G. A. Varzandian, “Minimum-time earth-moon and moon-earth orbital maneuvers using time-domain finite element method,” Acta Astronautica, vol. 66, no. 3-4, pp. 528–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Mingotti, F. Topputo, and F. Bernelli-Zazzera, “Efficient invariant-manifold, low-thrust planar trajectories to the moon,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, p. 817, 2012.
  22. J. R. Brophy and M. Noca, “Electric propulsion for solar system exploration,” Journal of Propulsion and Power, vol. 14, no. 5, pp. 700–707, 1998. View at Scopus
  23. D. P. S. Santos, A. F. B. A. Prado, L. Casalino, and G. Colasurdo, “Optimal trajectories towards near-earth-objects using solar electric propulsion (sep) and gravity assisted maneuver,” Journal of Aerospace Engineering, Sciences and Applications, vol. 1, no. 2, pp. 51–64, 2008.
  24. D. P. S. Santos, L. Casalino, G. Colasurdo, and A. F. B. A Prado, “Optimal trajectories towards near-earth-objects using solar electric propulsion (sep) and gravity assisted maneuver,” WSEAS Transactions on Applied and Theoretical Mechanics, vol. 4, no. 3, pp. 125–135, 2009. View at Scopus
  25. D. P. S. Santos and A. F. B. A. Prado, “Optimal low-thrust trajectories to reach the asteroid apophis,” WSEAS Mechanical Engineering Series, vol. 7, pp. 241–251, 2012.
  26. M. C. B. Biggs, The Optimization of Spacecraft Orbital Manoeuvres. Part I: Linearly Varying Thrust Angles, The Hatfield Polytechnic, Numerical Optimization Centre, 1978.
  27. M. C. B. Biggs, The Optimisation of Spacecraft Orbital Manoeuvres. Part II: Using Pontryagin's Maximum Principle, The Hatfield Polytechnic. Numerical Optimization Centre, 1979.
  28. A. F. B. A. Prado, Análise, Seleção e Implementação de Procedimentos que visem Manobras Ótimas de Satélites Artificiais [M.S. thesis], Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 1988.
  29. T. C. Oliveira, Estratégias ótimas para manobras orbitais utilizando propulsão contínua [M.S. thesis], Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2012.
  30. J. L. Ferreira, G. C. Possa, B. S. Moraes et al., “Permanent magnet hall thruster for satellite orbit maneuvering with low power,” Advances in Space Research, vol. 01, pp. 166–182, 2009.
  31. E. Stuhlinger, Ion Propulsion for Space Flight, McGraw-Hill, New York, NY, USA, 1st edition, 1964.
  32. R. G. Jahn, Physics of Electric Propulsion, McGraw-Hill, New York, NY, USA, 1st edition, 1968.
  33. D. G. Luemberger, Linear and Non-Linear Programming, Springer Science & Business Media, New York, NY, USA, 3rd edition, 2008.
  34. M. S. Bazaraa and C. M. Shetty, Nonlinear Programming-Theory and Algorithms, John Willey & Sons, New York, NY, USA, 1979.
  35. V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, “Physics of closed drift thrusters,” Plasma Sources Science and Technology, vol. 8, no. 1, pp. R1–R20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. E. M. Rocco, “Perturbed orbital motion with a PID control system for the trajectory,” in Proceedings of the 14th Colóquio Brasileiro De Dinâmica Orbital, Águas de Lindóia, Anais, UNESP, Guaratinguetá, Brazil, November 2008.