About this Journal Submit a Manuscript Table of Contents
Malaria Research and Treatment
Volume 2012 (2012), Article ID 371798, 5 pages
http://dx.doi.org/10.1155/2012/371798
Research Article

Medicinal Plants Used by Various Tribes of Bangladesh for Treatment of Malaria

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1205, Bangladesh

Received 7 December 2011; Revised 12 January 2012; Accepted 12 January 2012

Academic Editor: Giampietro Corradin

Copyright © 2012 Mohammed Rahmatullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Bruce-Chwatt, Chemotherapy of Malaria, World Health Organization, Geneva, Switzerland, 2nd edition, 1986.
  2. G. Bodeker, “Introduction,” in Traditional Medicinal Plants and Malaria, M. Willcox, G. Bodeker, and P. Rasoanaivo, Eds., pp. 1–3, CRC Press, New York, NY, USA, 2004.
  3. J. A. O. Achan, A. Talisuna, A. Erhart, et al., “Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria,” Malaria Journal, vol. 10, pp. 144–155, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. A. S. Fabiano-Tixier, A. Elmori, A. Blanckaert, E. Seguin, E. Petitcolas, and F. Chemat, “rapid and green analytical method for the determination of quinoline alkaloids from Cinchona succirubra based on microwave-integrated extraction and leaching (MIEL) prior to high performance liquid chromatography,” International Journal of Molecular Sciences, vol. 12, no. 11, pp. 7846–7860, 2011. View at Publisher · View at Google Scholar · View at PubMed
  5. W. R. Taylor and N. J. White, “Antimalarial drug toxicity: a review,” Drug Safety, vol. 27, no. 1, pp. 25–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Clark, K. C. Brannen, J. E. Sanders, and A. M. Hoberman, “Artesunate and artelinic acid: association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats,” Birth Defects Research B, vol. 92, no. 1, pp. 52–68, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. C. Wongsrichanalai, T. D. Nguyen, N. T. Trieu, et al., “In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials,” Acta Tropica, vol. 63, no. 2-3, pp. 151–158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Whegang, R. Tahar, V. N. Foumane et al., “Efficacy of non-artemisinin- and artemisinin-based combinationtherapies for uncomplicated falciparum malaria in Cameroon,” Malaria Journal, vol. 9, no. 1, pp. 56–65, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. W. A. Khan, D. A. Sack, S. Ahmed, et al., “Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance,” Malaria Journal, vol. 10, article 124, 2011. View at Publisher · View at Google Scholar · View at PubMed
  10. U. Haque, T. Sunahara, M. Hashizume, et al., “malaria prevalence, risk factors and spatial distribution in a hilly forest area of Bangladesh,” PLoS One, vol. 6, no. 4, Article ID e18908, 9 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  11. S. M. Ahmed, “Differing health and health-seeking behaviour: ethnic minorities of the Chittagong Hill Tracts, Bangladesh,” Asia-Pacific Journal of Public Health, vol. 13, no. 2, pp. 100–108, 2001. View at Scopus
  12. A. A. Shahat, “Procyanidins from Adansonia digitata,” Pharmaceutical Biology, vol. 44, no. 6, pp. 445–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Sannella, L. Messori, A. Casini et al., “Antimalarial properties of green tea,” Biochemical and Biophysical Research Communications, vol. 353, no. 1, pp. 177–181, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. T. Banerjee, S. K. Sharma, N. Surolia, and A. Surolia, “Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from Plasmodium falciparum,” Biochemical and Biophysical Research Communications, vol. 377, no. 4, pp. 1238–1242, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. V. Ramanandraibe, P. Grellier, M. T. Martin et al., “Antiplasmodial phenolic compounds from Piptadenia pervillei,” Planta Medica, vol. 74, no. 4, pp. 417–421, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Y. J. Park, I. M. Chung, and H. I. Moon, “Antiplasmodial procyanidins derivatives from Chinese Hawthorn,” Immunopharmacology and Immunotoxicology, vol. 32, no. 4, pp. 607–610, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. L. Ruiz, L. Ruiz, M. Maco, M. Cobos, A. L. Gutierrez-Choquevilca, and V. Roumy, “Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 917–921, 2011.
  18. M. A. Riel, D. E. Kyle, and W. K. Milhous, “Efficacy of scopadulcic acid A against Plasmodium falciparum in vitro,” Journal of Natural Products, vol. 65, no. 4, pp. 614–615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Das and M. K. Beuria, “Anti-malarial property of an extract of the plant Streblus asper in murine malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 85, no. 1, pp. 40–41, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Mukherjee and L. N. Roy, “Chemical examination of Streblus asper leaves,” International Journal of Crude Drug Research, vol. 21, no. 4, pp. 189–190, 1983. View at Publisher · View at Google Scholar
  21. A. S. Chawla, V. K. Kapoor, R. Mukhopadhyay, and M. Singh, “Constituents of Streblus asper,” Fitoterapia, vol. 61, no. 2, p. 186, 1990. View at Scopus
  22. E. O. Ajaiyeoba, J. S. Ashidi, L. C. Okpako, P. J. Houghton, and C. W. Wright, “Antiplasmodial compounds from Cassia siamea stem bark extract,” Phytotherapy Research, vol. 22, no. 2, pp. 254–255, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. J. Fotie, D. S. Bohle, M. L. Leimanis, E. Georges, G. Rukunga, and A. E. Nkengfack, “Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda,” Journal of Natural Products, vol. 69, no. 1, pp. 62–67, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. Kumar, N. Misra, K. Raj, K. Srivastava, and S. K. Puri, “Novel class of hybrid natural products derived from lupeol as antimalarial agents,” Natural Product Research, vol. 22, no. 4, pp. 305–319, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. H. I. Moon, J. C. Jung, and J. Lee, “Antiplasmodial activity of triterpenoid isolated from whole plants of Viola genus from South Korea,” Parasitology Research, vol. 100, no. 3, pp. 641–644, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. Pudhom, D. Sommit, N. Suwankitti, and A. Petsom, “Cassane furanoditerpenoids from the seed kernels of Caesalpinia bonduc from Thailand,” Journal of Natural Products, vol. 70, no. 9, pp. 1542–1544, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. Z. Linn, S. Awale, Y. Tezuka et al., “Cassane- and norcassane-type diterpenes from Caesalpinia crista of Indonesia and their antimalarial activity against the growth of Plasmodium falciparum,” Journal of Natural Products, vol. 68, no. 5, pp. 706–710, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. K. Kalauni, S. Awale, Y. Tezuka et al., “Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure-activity relationship,” Biological and Pharmaceutical Bulletin, vol. 29, no. 5, pp. 1050–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus