Abstract

The motion equations of anisotropic media, coupled to the mass conservation and thermoequilibrium equations of fluid, are studied here based on the standard space of physical presentation for thermoelastic dynamics of anisotropic saturated porous solids. By introducing a new compressible thermo-elastic model, a set of uncoupled equations of elastic waves are deduced. The results show that the elastic waves and speeds of elastic waves are affected by both anisotropic subspaces of solids and thermal and compressive coupling coefficients between fluid and solid. Based on these laws, we discuss the propagation behaviour of elastic waves for various anisotropic solids.

1. Introduction

A general theory of three-dimensional propagation of elastic waves in a fluid-saturated porous solid was presented by Biot [1–3]. In this theory, the continuum consists of both solid constituent and fluid one, which are two entirely different materials, and the coupled, dilatational waves can be generated in both solid constituent and fluid one at a sound source. The thermal effects on the elastic waves were discussed by other works [4, 5]. But in fact, for most of geological materials, such as rock and soil, it is difficult to distinguish the solid constituent and the fluid one and also impossible to get elastic waves of both solid constituent and fluid one by common measuring methods. In this paper, a new theory of elastic waves in a fluid-saturated porous solid subjected to thermal effects is given, in which the idea of standard spaces [6–13] is used to deal with the motion equation, thermoequilibrium equation, and the mass conservation equation. By this method, the classical Newton’s equation of motion, thermoequilibrium equation, and the mass conservation equation under the geometric presentation can be transformed into the eigen ones under the physical presentation. The former is in the form of tensor, and the latter is in the form of scalar. By introducing a new compressible thermoelastic model, a set of uncoupled modal equations of elastic waves are obtained, each of which shows the existence of elastic subwaves; meanwhile, the propagation speed, propagation direction and space pattern of these subwaves can be completely determined by the modal equations.

2. Constitutive Equations of Anisotropic Porous Media

According to Terzaghi’s effective stress theory and the compressible relationship of porous elastic materials, the constitutive equations of fluid saturated linear porous solids with thermal effects are as follows:πœŽπ‘–π‘—=π‘π‘ π‘–π‘—π‘˜π‘™πœ€π‘ π‘˜π‘™+π‘Žπ‘–π‘—π‘βˆ’π‘π‘–π‘—πœƒ,𝑛=πœˆπ‘+πœ…πœƒβˆ’π‘Žπ‘˜π‘™πœ€π‘ π‘˜π‘™,πœ‚=πœπœƒ+π‘π‘˜π‘™πœ€π‘ π‘˜π‘™+πœ…π‘,(1) where, 𝑝 is the pore pressure, πœƒ is the temperature, π‘π‘ π‘–π‘—π‘˜π‘™ elastic tensor of solid constituent of porous material, 𝜈 compressive coefficient of porous material, 𝜏 heat coefficient, π‘Žπ‘–π‘— coupling coefficient between solid constituent and fluid one, 𝑏𝑖𝑗 thermal coupling coefficient, πœ… coupling coefficient between porous deformation and heat, 𝑛 porosity, πœ‚ entropy.

Rewriting (1) in the Voigt’s notation, we have 𝝈=πœπ‘ β‹…π’π‘ +πšβ‹…π‘βˆ’π›πœƒ,(2)𝑛=πœˆβ‹…π‘+πœ…πœƒβˆ’πšπ‘‡β‹…π’π‘ ,(3)πœ‚=πœπœƒ+𝐛𝑇⋅𝐒𝑠+πœ…π‘.(4) The skeleton elastic matrix πœπ‘  can be spectrally decomposed as follows [6–9]:πœπ‘ =πš½πš²πš½π‘‡,(5) where Ξ›=diag[πœ†1,πœ†2,πœ†3,πœ†4,πœ†5,πœ†6] are the matrixes of eigen elasticity [10–13] of porous skeleton. Ξ¦={𝝋1,𝝋2,π‹πŸ‘,𝝋4,𝝋5,𝝋6} are the modal matrixes, which are both orthogonal and positive definite matrixes, and satisfy Φ𝑇Φ=𝐈.

Projecting the elastic physical qualities of the geometric presentation, such as the stress vector 𝝈 and strain vector 𝐒𝑠, into the standard spaces of the physical presentation, we getπˆβˆ—=πš½π‘‡π’β‹…πˆ,βˆ—=πš½π‘‡β‹…π’π‘ .(6) Rewriting (6) in the form of scalar, we haveπœŽβˆ—π‘–=π‹βˆ—π‘–π‘‡π‘†β‹…πˆ,𝑖=1βˆ’π‘š,(7)βˆ—π‘–=π‹βˆ—π‘–π‘‡β‹…π’π‘ ,𝑖=1βˆ’π‘š,(8) where π‘š(≀6) is the number of the elastic independent subspaces. Equations (7) and (8) show the elastic physical qualities under the physical presentation.

Substituting (6) into (2)–(4), respectively, and multiplying them with the transpose of modal matrix in the left, we haveπš½π‘‡πˆ=πš½π‘‡πœπ‘ πš½π’βˆ—+πš½π‘‡πšπ‘βˆ’πš½π‘‡π›πœƒ,𝑛=πœˆβ‹…π‘+πœ…β‹…πœƒβˆ’πšπ‘‡πš½π’βˆ—,πœ‚=πœβ‹…πœƒ+π›π‘‡πš½π’βˆ—+πœ…β‹…π‘.(9) Using (5), (6), we getπˆβˆ—=πš²π’βˆ—+πšβˆ—π‘βˆ’π›βˆ—πœƒ,𝑛=πœˆπ‘+πœ…πœƒβˆ’πšβˆ—π‘‡β‹…π’βˆ—,πœ‚=πœπœƒ+π›βˆ—π‘‡β‹…π’βˆ—+πœ…π‘.(10) Rewriting the above equations in the form of scalar, we haveπœŽβˆ—π‘–=πœ†π‘–π‘†βˆ—π‘–+π‘Žβˆ—π‘–π‘βˆ’π‘βˆ—π‘–πœƒ,𝑖=1βˆ’π‘š,𝑛=πœˆπ‘+πœ…πœƒβˆ’π‘Žβˆ—π‘˜π‘†βˆ—π‘˜,π‘˜=1βˆ’π‘šsumtoπ‘˜,πœ‚=πœπœƒ+π‘βˆ—π‘˜π‘†βˆ—π‘˜+πœ…π‘,π‘˜=1βˆ’π‘šsumtoπ‘˜.(11) Equations (11) are just the modal constitutive equations for anisotropic saturated linear porous elastic media with thermal effects.

3. Mass Conservation, Heat, and Motion Equations

The mass conservation equation of liquid in porous media is the following: πœ•ξ€·π‘›π›Ύπ‘€ξ€Έ+πœ•π‘‘β‡€ξ‚΅π›Ύβˆ‡β‹…π‘€β‡€π‘‰ξ‚Ά=0,(12) where, 𝑛 is porosity, 𝛾𝑀 specific gravity of liquid, ⇀𝑉 flow velocity of liquid, and β‡€βˆ‡ Hamilton operator.

For uncompressible and stable flowing of liquid, (12) can also be written as follows:βˆ‡π‘‘π‘›=0.(13) For thermoequilibrium state of an isolated system, the second law of thermodynamics is the following:𝑑𝑠=𝑑𝑠𝑒+𝑑𝑠𝑖=0,(14) where 𝑠 is total entropy of system. By using the entropy density, the above can be written as followsπœŒΜ‡πœ‚=0,orπœŒπœ‚=𝐢,(15) where 𝐢 is an arbitrary constant, and we take it to be zero.

The eigen equation of motion of solids can be written as follows [6–8]:Ξ”βˆ—π‘–πœŽβˆ—π‘–=πœŒπ‘ βˆ‡π‘‘π‘‘π‘†βˆ—π‘–,𝑖=1βˆ’π‘š,(16) where, Ξ”βˆ—π‘–={πœ‘βˆ—π‘–}𝑇[Ξ”]{πœ‘βˆ—π‘–} is the stress operator, in which[Ξ”]=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£πœ•11000πœ•31πœ•210πœ•220πœ•320πœ•2100πœ•33πœ•32πœ•3100πœ•23πœ•23ξ€·πœ•22+πœ•33ξ€Έπœ•21πœ•31πœ•130πœ•13πœ•12ξ€·πœ•11+πœ•33ξ€Έπœ•32πœ•12πœ•120πœ•13πœ•23ξ€·πœ•22+πœ•11ξ€ΈβŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦,(17) where πœ•π‘–π‘—=πœ•π‘—π‘–=πœ•2/πœ•π‘₯π‘–πœ•π‘₯𝑗.

Substituting (11) into (13), (15), and (16), we haveΞ”βˆ—π‘–ξ€·πœ†π‘–π‘†βˆ—π‘–+π‘Žβˆ—π‘–π‘βˆ’π‘βˆ—π‘–πœƒξ€Έ=πœŒπ‘ βˆ‡π‘‘π‘‘π‘†βˆ—π‘–,(18)πœˆπ‘+πœ…πœƒβˆ’π‘Žβˆ—π‘˜π‘†βˆ—π‘˜=0,(19)πœπœƒ+π‘βˆ—π‘˜π‘†βˆ—π‘˜+πœ…π‘=0.(20) From (19), we can get the following equation based on the operator principle:π‘Žπ‘=βˆ—π‘˜πœˆπ‘†βˆ—π‘˜βˆ’πœ…πœˆπœƒ.(21) Substituting it into (18) and (20), respectively, we haveΞ”βˆ—π‘–πœ†ξ‚Έξ‚΅π‘–+π‘Žβˆ—π‘–π›Ώπ‘–π‘˜π‘Žβˆ—π‘˜πœˆξ‚Άπ‘†βˆ—π‘–βˆ’ξ‚€πœ…πœˆπ‘Žβˆ—π‘–+π‘βˆ—π‘–ξ‚πœƒξ‚Ή=πœŒπ‘ βˆ‡π‘‘π‘‘π‘†βˆ—π‘–,ξ‚€(22)πœ…πœ…πœˆξ‚ξ‚€π‘βˆ’πœπœƒβˆ’βˆ—π‘–+πœ…πœˆπ‘Žβˆ—π‘–ξ‚π‘†βˆ—π‘–=0.(23) Substituting (23) into (22) again, we getΞ”βˆ—π‘–πœ†ξ‚Έξ‚΅π‘–+π‘Žβˆ—π‘–π›Ώπ‘–π‘˜π‘Žβˆ—π‘˜πœˆξ‚Άβˆ’ξ‚€πœ…πœˆπ‘Žβˆ—π‘–+π‘βˆ—π‘–ξ‚Γ—ξ‚€πœ…πœ…πœˆξ‚βˆ’πœβˆ’1ξ‚€π‘βˆ—π‘–+πœ…πœˆπ‘Žβˆ—π‘–ξ‚ξ‚Ήπ‘†βˆ—π‘–=πœŒπ‘ βˆ‡π‘‘π‘‘π‘†βˆ—π‘–.(24) Rewriting it in the standard form of elastic waves, we haveΞ”βˆ—π‘–π‘†βˆ—π‘–=1𝑐2π‘–βˆ‡π‘‘π‘‘π‘†βˆ—π‘–,𝑖=1βˆ’π‘š,(25) where𝑐𝑖=ξ„Άξ„΅ξ„΅βŽ·ξ‚ƒξ€·πœ†π‘–+ξ€·π‘Žβˆ—π‘–π›Ώπ‘–π‘˜π‘Žβˆ—π‘˜βˆ’ξ€·/πœˆξ€Έξ€Έ(πœ…/𝜈)π‘Žβˆ—π‘–+π‘βˆ—π‘–ξ€Έ2((πœ…πœ…/𝜈)βˆ’πœ)βˆ’1ξ‚„πœŒπ‘ .(26) It is just the speed of elastic waves in porous media when thermal effects are considered.

5. Application

5.1. Isotropic Media

For isotropic media, the material tensors in (1) are represented by the following matrices under the compact notationβŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£π‘11𝑐12𝑐12𝑐00012𝑐11𝑐12𝑐00012𝑐12𝑐11000000𝑐660000𝑐66000000𝑐66⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦,βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘Ž11000π‘Ž11000π‘Ž11⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦,βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘11000𝑏11000𝑏11⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦,(27) where 𝑐66=(𝑐11βˆ’π‘12).

There are two independent eigenspaces in an isotropic solids [6–9]π‘Š=π‘Š1(1)𝝋1ξ€»βŠ•π‘Š2(5)𝝋2,…,𝝋6ξ€»,(28) where𝝋1=√33[]1,1,1,0,0,0𝑇,𝝋2=√22[]0,1,βˆ’1,0,0,0𝑇𝝋3=√66[]2,βˆ’1,βˆ’1,0,0,0𝑇,𝝋𝑖=𝝃𝑖(𝑖=4,5,6)(29) and πœ‰π‘– is a vector of order 6 in which the 𝑖th element is 1 and others are 0.

The eigenelasticity of isotropic solids areπœ†1=𝑐11+2𝑐12πœ†=3πœ†+2πœ‡,2=𝑐11βˆ’π‘12=2πœ‡,(30) where πœ† and πœ‡ are Lame’s constants.

The coupled coefficients and stress operators for isotropic solids are calculated asπ‘Žβˆ—1=√3π‘Ž11,π‘Žβˆ—2𝑏=0,βˆ—1=√3𝑏11,π‘βˆ—2Ξ”=0,βˆ—1=13βˆ‡2III,Ξ”βˆ—2=12βˆ‡2III,(31) where βˆ‡2III is Laplace’s operator of three dimensions.

It will be seen as follows that the modal strains in isotropic case represent the dilation and shear deformation, respectively.

Using (8), the modal strain of order 1 of isotropic solids isπ‘†βˆ—1=𝝋1βˆ—π‘‡βˆšβ‹…π’=33𝑆11+𝑆22+𝑆33ξ€Έ.(32) Equation (32) represents the relative change of the volume of elastic solids. So the wave equation of order 1 shows the motion of pure longitudinal wave.

Also from (8), the modal strain of order 2 of isotropic solids isπ‘†βˆ—2π‹βˆ—2=π’βˆ’π‘†βˆ—1π‹βˆ—1.(33) Using the orthogonality condition of eigenvectors, we have||π‘†βˆ—2||=ξ‚ƒξ€·π’βˆ’π‘†βˆ—1π‹βˆ—1ξ€Έπ‘‡β‹…ξ€·π’βˆ’π‘†βˆ—1π‹βˆ—1ξ€Έξ‚„1/2=13𝑆1βˆ’π‘†2ξ€Έ2+𝑆2βˆ’π‘†3ξ€Έ2+𝑆3βˆ’π‘†1ξ€Έ21/2.(34) Equation (34) represents the pure shear strain on the elastic solids. So the wave equation of order 2 shows the motion of pure transverse wave as follows:𝑐1=ξ„Άξ„΅ξ„΅βŽ·ξ‚ƒξ€·ξ€·π‘ŽπΎ+211βˆ’ξ€·/πœˆξ€Έξ€Έ(πœ…/𝜈)π‘Ž11+𝑏11ξ€Έ2((πœ…πœ…/𝜈)βˆ’πœ)βˆ’1ξ‚„πœŒπ‘ ,𝑐2=ξ‚™πΊπœŒπ‘ ,(35) where 𝐾 is the bulk modulus and 𝐺 shear one of solid. It is seen that the speed of pure transverse wave is not subject to the thermal effects.

5.2. Transversely Isotropic Media

For isotropic media, the material tensors in (1) are represented by the following matrices under the compact notation:βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£π‘11𝑐12𝑐13𝑐00012𝑐11𝑐13𝑐00013𝑐13𝑐13000000𝑐440000𝑐44000000𝑐66⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦,βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘Ž11000π‘Ž11000π‘Ž33⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦,βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘11000𝑏11000𝑏33⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦,(36) where 𝑐66=(1/2)(𝑐11βˆ’π‘12).

There are four independent eigenspaces in an transversely isotropic solids [6–9] as follows:π‘Š=π‘Š1(1)𝝋1ξ€»βŠ•π‘Š2(1)𝝋2ξ€»βŠ•π‘Š3(2)𝝋3,𝝋6ξ€»βŠ•π‘Š4(2)𝝋4,𝝋5ξ€»,(37) whereπ‹πŸ,𝟐=𝑐13ξ”ξ€·πœ†1,2βˆ’π‘11βˆ’π‘12ξ€Έ2+2𝑐213Γ—ξ‚Έπœ†1,1,1,2βˆ’π‘11βˆ’π‘12𝑐3ξ‚Ή,0,0,0π‘‡π‹πŸ‘=√22[]1,βˆ’1,0,0,0,0𝑇,𝝋𝐒=𝝃𝑖,𝑖=4,5,6.(38) The eigenelasticities of transversely isotropic solids areπœ†1,2=𝑐11+𝑐12+𝑐332Β±ξƒŽξ‚΅π‘11+𝑐12+𝑐332ξ‚Ά2+2𝑐213,πœ†3=𝑐11βˆ’π‘12,πœ†4=𝑐44.(39) The coupled coefficients and stress operators for transversely isotropic solids are calculated as π‘Žβˆ—π‘–=𝑔𝑖2π‘Ž11+π‘‘π‘–π‘Ž33ξ€Έπ‘Ž,𝑖=1,2,βˆ—3=0,π‘Žβˆ—4𝑏=0,βˆ—π‘–=𝑔𝑖2𝑏11+𝑑𝑖𝑏33𝑏,𝑖=1,2,βˆ—3=0,π‘βˆ—4Ξ”=0,βˆ—1,2=𝑔21,2βˆ‡βˆ—III,Ξ”βˆ—3=23βˆ‡2II,Ξ”βˆ—4=12ξ€·βˆ‡2III+2πœ•12ξ€Έ,(40) where, 𝑔𝑖=𝑐13/(πœ†π‘–βˆ’π‘11βˆ’π‘12)2+2𝑐213,𝑑𝑖=πœ†π‘–βˆ’π‘11βˆ’π‘12/𝑐3.

It will be seen as follows that the modal strains in transversely isotropic case represent the quasi-dilation and quasi-shear deformation, respectively:π‘†βˆ—1,2=𝑐13ξ”ξ€·πœ†1,2βˆ’π‘11βˆ’π‘12ξ€Έ2+2𝑐213×𝑆11+𝑆22+ξ‚΅πœ†1,2βˆ’π‘11βˆ’π‘12𝑐13𝑆33ξ‚Ή,𝑆3βˆ—=ξ‚™12𝑆11+𝑆22ξ€Έ2+𝑆212,𝑆4βˆ—=ξ‚™12𝑆232+𝑆231ξ€Έ.(41) The speeds of transversely isotropic solids are the following:𝑐1,2=ξ„Άξ„΅ξ„΅ξ„΅βŽ·ξ‚Έξ‚€πœ†1,2+ξ‚€π‘Žβˆ—21,2βˆ’ξ‚€(/πœˆξ‚ξ‚πœ…/𝜈)π‘Žβˆ—1,2+π‘βˆ—1,22((πœ…πœ…/𝜈)βˆ’πœ)βˆ’1ξ‚ΉπœŒπ‘ ,𝑐3=𝑐11βˆ’π‘12πœŒπ‘ ,𝑐4=𝑐44πœŒπ‘ .(42) It is seen that the speeds of quasi-transverse waves are not subject to the thermal effects.

6. Conclusion

In this paper, a new elastic wave model for fluid-saturated porous solid with thermal effects under single-phase assumption is presented, in which the mechanical equations of motion coupled to mass conservation equation and thermoequilibrium equation are considered. A set of uncoupled elastic wave equations for anisotropic porous solid with thermal effects are deduced. The results show that the thermal and compressive coupling coefficients between solid and liquid constituents of system has and shear deformation of solids have not effects on the elastic wave equations and propagation speeds of elastic waves for anisotropic porous solids.