About this Journal Submit a Manuscript Table of Contents
Multiple Sclerosis International
Volume 2013 (2013), Article ID 627870, 16 pages
http://dx.doi.org/10.1155/2013/627870
Review Article

Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations

Radiology Department, Division of Neuroradiology, University of Colorado Denver, 12700 E 19th Avenue Mail Stop C278, Aurora, CO 80045, USA

Received 8 April 2013; Accepted 28 May 2013

Academic Editor: Augusto A. Miravalle

Copyright © 2013 Justin Morris Honce. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Weller, “Greenfield's Neuropathology (8th Edition),” Neuropathology and Applied Neurobiology, vol. 34, pp. 573–574, 2008.
  2. D. Sander and M. Frankfurt, “Hirnrindenbefunde bei multipler Sklerose,” European Neurology, vol. 4, pp. 427–436, 1898.
  3. F. Schob, “Ein Beitrag zur pathologischen Anatomie der multiplen Sklerose,” European Neurology, vol. 22, pp. 62–87, 1907.
  4. B. Brownell and J. T. Hughes, “The distribution of plaques in the cerebrum in multiple sclerosis,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 25, pp. 315–320, 1962. View at Scopus
  5. H. E. Hulst and J. J. G. Geurts, “Gray matter imaging in multiple sclerosis: what have we learned?” BMC Neurology, vol. 11, article 153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. G. Geurts, L. Bö, P. J. W. Pouwels, J. A. Castelijns, C. H. Polman, and F. Barkhof, “Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology,” American Journal of Neuroradiology, vol. 26, no. 3, pp. 572–577, 2005. View at Scopus
  7. L. Bø, C. A. Vedeler, H. Nyland, B. D. Trapp, and S. J. Mørk, “Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration,” Multiple Sclerosis, vol. 9, no. 4, pp. 323–331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Bø, C. A. Vedeler, H. I. Nyland, B. D. Trapp, and S. J. Mørk, “Subpial demyelination in the cerebral cortex of multiple sclerosis patients,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 7, pp. 723–732, 2003. View at Scopus
  9. D. Kidd, F. Barkhof, R. McConnell, P. R. Algra, I. V. Allen, and T. Revesz, “Cortical lesions in multiple sclerosis,” Brain, vol. 122, no. 1, pp. 17–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Peterson, L. Bö, S. Mörk, A. Chang, and B. D. Trapp, “Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions,” Annals of Neurology, vol. 50, no. 3, pp. 389–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Wegner, M. M. Esiri, S. A. Chance, J. Palace, and P. M. Matthews, “Neocortical neuronal, synaptic, and glial loss in multiple sclerosis,” Neurology, vol. 67, no. 6, pp. 960–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Albert, J. Antel, W. Brück, and C. Stadelmann, “Extensive cortical remyelination in patients with chronic multiple sclerosis,” Brain Pathology, vol. 17, no. 2, pp. 129–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Gilmore, I. Donaldson, L. Bö, T. Owens, J. Lowe, and N. Evangelou, “Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 2, pp. 182–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. F. Lucchinetti, B. F. G. Popescu, R. F. Bunyan et al., “Inflammatory cortical demyelination in early multiple sclerosis,” New England Journal of Medicine, vol. 365, no. 23, pp. 2188–2197, 2011. View at Scopus
  15. B. F. G. Popescu, R. F. Bunyan, J. E. Parisi, R. M. Ransohoff, and C. F. Lucchinetti, “A case of multiple sclerosis presenting with inflammatory cortical demyelination,” Neurology, vol. 76, no. 20, pp. 1705–1710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann et al., “Cortical demyelination and diffuse white matter injury in multiple sclerosis,” Brain, vol. 128, no. 11, pp. 2705–2712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Vercellino, F. Plano, B. Votta, R. Mutani, M. T. Giordana, and P. Cavalla, “Grey matter pathology in multiple sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 12, pp. 1101–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. G. Geurts, L. Bö, S. D. Roosendaal et al., “Extensive hippocampal demyelination in multiple sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 9, pp. 819–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Papadopoulos, S. Dukes, R. Patel, R. Nicholas, A. Vora, and R. Reynolds, “Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis,” Brain Pathology, vol. 19, no. 2, pp. 238–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Vercellino, S. Masera, M. Lorenzatti et al., “Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 5, pp. 489–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Kutzelnigg, J. C. Faber-Rod, J. Bauer et al., “Widespread demyelination in the cerebellar cortex in multiple sclerosis,” Brain Pathology, vol. 17, no. 1, pp. 38–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. P. Gilmore, L. Bö, T. Owens, J. Lowe, M. M. Esiri, and N. Evangelou, “Spinal cord gray matter demyelination in multiple sclerosis—a novel pattern of residual plaque morphology,” Brain Pathology, vol. 16, no. 3, pp. 202–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. P. Brink, R. Veerhuis, E. C. W. Breij, P. Van Der Valk, C. D. Dijkstra, and L. Bö, “The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 2, pp. 147–155, 2005. View at Scopus
  24. B. Serafini, B. Rosicarelli, R. Magliozzi, E. Stigliano, and F. Aloisi, “Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis,” Brain Pathology, vol. 14, no. 2, pp. 164–174, 2004. View at Scopus
  25. R. Magliozzi, O. Howell, A. Vora et al., “Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology,” Brain, vol. 130, no. 4, pp. 1089–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. O. W. Howell, C. A. Reeves, R. Nicholas et al., “Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis,” Brain, vol. 134, no. 9, pp. 2755–2771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Choi, O. W. Howell, D. Carassiti et al., “Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis,” Brain, vol. 135, part 10, pp. 2925–2937, 2012.
  28. B. F. Gh Popescu and C. F. Lucchinetti, “Meningeal and cortical grey matter pathology in multiple sclerosis,” BMC Neurology, vol. 12, article 11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Merkler, T. Ernsting, M. Kerschensteiner, W. Brück, and C. Stadelmann, “A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination,” Brain, vol. 129, no. 8, pp. 1972–1983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Dutta, A. Chang, M. K. Doud et al., “Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients,” Annals of Neurology, vol. 69, no. 3, pp. 445–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E.-J. Kooi, J. J. G. Geurts, J. van Horssen, L. Bø, and P. van der Valk, “Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 9, pp. 1021–1028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E.-J. Kooi, M. Prins, N. Bajic et al., “Cholinergic imbalance in the multiple sclerosis hippocampus,” Acta Neuropathologica, vol. 122, no. 3, pp. 313–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. R. Campbell, I. Ziabreva, A. K. Reeve et al., “Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis,” Annals of Neurology, vol. 69, no. 3, pp. 481–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Vercellino, A. Merola, C. Piacentino et al., “Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 8, pp. 732–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. E. Witte, P. G. Nijland, J. A. R. Drexhage et al., “Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex,” Acta Neuropathologica, vol. 125, pp. 231–243, 2013.
  36. R. Srivastava, M. Aslam, S. R. Kalluri, et al., “Potassium channel KIR4.1 as an immune target in multiple sclerosis,” New England Journal of Medicine, vol. 367, pp. 115–112, 2012.
  37. M. T. Fischer, R. Sharma, J. L. Lim et al., “NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury,” Brain, vol. 135, no. 3, pp. 886–899, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Lassmann and J. Van Horssen, “The molecular basis of neurodegeneration in multiple sclerosis,” FEBS Letters, vol. 585, no. 23, pp. 3715–3723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Frischer, S. Bramow, A. Dal-Bianco et al., “The relation between inflammation and neurodegeneration in multiple sclerosis brains,” Brain, vol. 132, no. 5, pp. 1175–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. G. Geurts, P. J. W. Pouwels, B. M. J. Uitdehaag, C. H. Polman, F. Barkhof, and J. A. Castelijns, “Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging,” Radiology, vol. 236, no. 1, pp. 254–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Turetschek, P. Wunderbaldinger, A. A. Bankier et al., “Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging,” Magnetic Resonance Imaging, vol. 16, no. 2, pp. 127–135, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Calabrese, N. De Stefano, M. Atzori et al., “Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis,” Archives of Neurology, vol. 64, no. 10, pp. 1416–1422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. G. Geurts, P. J. W. Pouwels, B. M. J. Uitdehaag, C. H. Polman, F. Barkhof, and J. A. Castelijns, “Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging,” Radiology, vol. 236, no. 1, pp. 254–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. P. Wattjes, G. G. Lutterbey, J. Gieseke et al., “Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions,” American Journal of Neuroradiology, vol. 28, no. 1, pp. 54–59, 2007. View at Scopus
  45. F. Nelson, A. H. Poonawalla, P. Hou, F. Huang, J. S. Wolinsky, and P. A. Narayana, “Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging,” American Journal of Neuroradiology, vol. 28, no. 9, pp. 1645–1649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. W. Pouwels, J. P. A. Kuijer, E. Korf, J. J. G. Geurts, and F. Barkhof, “3D double inversion recovery for high resolution gray matter brain imaging [abstr],” in Proceedings of the 10th Meeting of the International Society for Magnetic Resonance in Medicine, p. 1290, Berkely, Calif, USA, 2002.
  47. P. J. W. Pouwels, J. P. A. Kuijer, J. P. Mugler III, C. R. G. Guttmann, and F. Barkhof, “Human gray matter: feasibility of single-slab 3D double inversion-recovery high-spatial-resolution MR imaging,” Radiology, vol. 241, no. 3, pp. 873–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. J. G. Geurts, S. D. Roosendaal, M. Calabrese et al., “Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI,” Neurology, vol. 76, no. 5, pp. 418–424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Seewann, H. Vrenken, E.-J. Kooi et al., “Imaging the tip of the iceberg: visualization of cortical lesions in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 10, pp. 1202–1210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Seewann, E.-J. Kooi, S. D. Roosendaal et al., “Postmortem verification of MS cortical lesion detection with 3D DIR,” Neurology, vol. 78, no. 5, pp. 302–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Bagnato, J. A. Butman, S. Gupta et al., “In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis,” American Journal of Neuroradiology, vol. 27, no. 10, pp. 2161–2167, 2006. View at Scopus
  52. V. Sethi, T. A. Yousry, N. Muhlert et al., “Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, pp. 877–882, 2012.
  53. F. Nelson, A. Poonawalla, P. Hou, J. S. Wolinsky, and P. A. Narayana, “3D MPRAGE improves classification of cortical lesions in multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 9, pp. 1214–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Simon, S. Schmidt, C. Lukas et al., “Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla,” European Radiology, vol. 20, no. 7, pp. 1675–1683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Schmierer, H. G. Parkes, P.-W. So et al., “High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis,” Brain, vol. 133, no. 3, pp. 858–867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Pitt, A. Boster, W. Pei et al., “Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging,” Archives of Neurology, vol. 67, no. 7, pp. 812–818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Kangarlu, E. C. Bourekas, A. Ray-Chaudhury, and K. W. Rammohan, “Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 tesla,” American Journal of Neuroradiology, vol. 28, no. 2, pp. 262–266, 2007. View at Scopus
  58. K. Kollia, S. Maderwald, N. Putzki et al., “First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T,” American Journal of Neuroradiology, vol. 30, no. 4, pp. 699–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Mainero, T. Benner, A. Radding et al., “In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI,” Neurology, vol. 73, no. 12, pp. 941–948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Metcalf, D. Xu, D. T. Okuda et al., “High-resolution phased-array MRI of the human brain at 7 tesla: initial experience in multiple sclerosis patients,” Journal of Neuroimaging, vol. 20, no. 2, pp. 141–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. A. S. Nielsen, R. P. Kinkel, E. Tinelli, T. Benner, J. Cohen-Adad, and C. Mainero, “Focal cortical lesion detection in multiple sclerosis: 3 tesla DIR versus 7 tesla FLASH-T2,” Journal of Magnetic Resonance Imaging, vol. 35, no. 3, pp. 537–542, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Calabrese, M. Filippi, M. Rovaris et al., “Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study,” Multiple Sclerosis, vol. 15, no. 1, pp. 36–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. S. D. Roosendaal, B. Moraal, P. J. W. Pouwels et al., “Accumulation of cortical lesions in MS: relation with cognitive impairment,” Multiple Sclerosis, vol. 15, no. 6, pp. 708–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Calabrese, F. Agosta, F. Rinaldi et al., “Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis,” Archives of Neurology, vol. 66, no. 9, pp. 1144–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Calabrese, M. A. Rocca, M. Atzori et al., “A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis,” Annals of Neurology, vol. 67, no. 3, pp. 376–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Mike, B. I. Glanz, P. Hildenbrand et al., “Identification and clinical impact of multiple sclerosis cortical lesions as assessed by routine 3T MR imaging,” American Journal of Neuroradiology, vol. 32, no. 3, pp. 515–521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Nelson, S. Datta, N. Garcia et al., “Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 9, pp. 1122–1129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Calabrese, P. Grossi, A. Favaretto et al., “Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 1, pp. 49–54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Calabrese, V. Poretto, A. Favaretto et al., “Cortical lesion load associates with progression of disability in multiple sclerosis,” Brain, vol. 135, pp. 2952–2961, 2012.
  70. M. Rovaris, M. Bozzali, G. Iannucci et al., “Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study,” Archives of Neurology, vol. 59, no. 9, pp. 1406–1412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. J. P. Ranjeva, B. Audoin, M. V. Au Duong et al., “Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis,” American Journal of Neuroradiology, vol. 26, pp. 119–127, 2005.
  72. F. Agosta, M. Rovaris, E. Pagani, M. P. Sormani, G. Comi, and M. Filippi, “Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis,” Brain, vol. 129, no. 10, pp. 2620–2627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Rovaris, E. Judica, A. Gallo et al., “Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years,” Brain, vol. 129, no. 10, pp. 2628–2634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. Z. Khaleeli, M. Cercignani, B. Audoin, O. Ciccarelli, D. H. Miller, and A. J. Thompson, “Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability,” NeuroImage, vol. 37, no. 1, pp. 253–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. M. P. Amato, E. Portaccio, M. L. Stromillo et al., “Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis,” Neurology, vol. 71, no. 9, pp. 632–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. L. K. Fisniku, D. R. Altmann, M. Cercignani et al., “Magnetization transfer ratio abnormalities reflect clinically relevant grey matter damage in multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 6, pp. 668–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Tovar-Moll, I. E. Evangelou, A. W. Chiu et al., “Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3T,” American Journal of Neuroradiology, vol. 30, no. 7, pp. 1380–1386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Crespy, W. Zaaraoui, M. Lemaire et al., “Prevalence of grey matter pathology in early multiple sclerosis assessed by Magnetization transfer ratio imaging,” PLoS ONE, vol. 6, no. 9, Article ID e24969, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. J. T. Chen, S. Narayanan, D. L. Collins, S. M. Smith, P. M. Matthews, and D. L. Arnold, “Relating neocortical pathology to disability progression in multiple sclerosis using MRI,” NeuroImage, vol. 23, no. 3, pp. 1168–1175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Tedeschi, L. Lavorgna, P. Russo et al., “Brain atrophy and lesion load in a large population of patients with multiple sclerosis,” Neurology, vol. 65, no. 2, pp. 280–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Morgen, G. Sammer, S. M. Courtney et al., “Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS,” NeuroImage, vol. 30, no. 3, pp. 891–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. M. K. Houtchens, R. H. B. Benedict, R. Killiany et al., “Thalamic atrophy and cognition in multiple sclerosis,” Neurology, vol. 69, no. 12, pp. 1213–1223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Fisher, J.-C. Lee, K. Nakamura, and R. A. Rudick, “Gray matter atrophy in multiple sclerosis: a longitudinal study,” Annals of Neurology, vol. 64, no. 3, pp. 255–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. L. K. Fisniku, D. T. Chard, J. S. Jackson et al., “Gray matter atrophy is related to long-term disability in multiple sclerosis,” Annals of Neurology, vol. 64, no. 3, pp. 247–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Horakova, M. G. Dwyer, E. Havrdova et al., “Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis. A 5-year longitudinal study,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 112–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Rocca, S. Mesaros, E. Pagani, M. P. Sormani, G. Comi, and M. Filippi, “Thalamic damage and long-term progression of disability in multiple sclerosis,” Radiology, vol. 257, no. 2, pp. 463–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Audoin, W. Zaaraoui, F. Reuter et al., “Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 6, pp. 690–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Calabrese, F. Rinaldi, I. Mattisi et al., “Widespread cortical thinning characterizes patients with MS with mild cognitive impairment,” Neurology, vol. 74, no. 4, pp. 321–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Calabrese, F. Rinaldi, P. Grossi et al., “Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis,” Multiple Sclerosis, vol. 16, no. 10, pp. 1220–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Calabrese, F. Rinaldi, I. Mattisi et al., “The predictive value of gray matter atrophy in clinically isolated syndromes,” Neurology, vol. 77, no. 3, pp. 257–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. D. Roosendaal, K. Bendfeldt, H. Vrenken et al., “Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability,” Multiple Sclerosis, vol. 17, no. 9, pp. 1098–1106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. U. Nocentini, M. Bozzali, B. Spanò et al., “Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis,” Brain Imaging and Behavior, pp. 1–9, 2012. View at Publisher · View at Google Scholar
  93. M. P. Amato, B. Hakiki, B. Goretti et al., “Association of MRI metrics and cognitive impairment in radiologically isolated syndromes,” Neurology, vol. 78, no. 5, pp. 309–314, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Batista, R. Zivadinov, M. Hoogs et al., “Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis,” Journal of Neurology, vol. 259, no. 1, pp. 139–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Zivadinov, C. Tekwe, N. Bergsland et al., et al., “Bimonthly evolution of cortical atrophy in early relapsing-remitting multiple sclerosis over 2 years: a longitudinal study,” Multiple Sclerosis International, vol. 2013, Article ID 231345, 8 pages, 2013. View at Publisher · View at Google Scholar
  96. R. Zivadinov, L. Locatelli, D. Cookfair et al., “Interferon beta-1a slows progression of brain atrophy in relapsing-remitting multiple sclerosis predominantly by reducing gray matter atrophy,” Multiple Sclerosis, vol. 13, no. 4, pp. 490–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Nakamura, R. Rudick, J. C. Lee, P. Foulds, and E. Fisher, “Effect of intramuscular interferon beta-1a on gray matter atrophy in relapsing-remitting multiple sclerosis,” Neurology, vol. 74, p. A407, 2010.
  98. K. Bendfeldt, H. Egger, T. E. Nichols et al., “Effect of immunomodulatory medication on regional gray matter loss in relapsing-remitting multiple sclerosis-a longitudinal MRI study,” Brain Research, vol. 1325, pp. 174–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Calabrese, V. Bernardi, M. Atzori et al., “Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing-remitting multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 4, pp. 418–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Rinaldi, M. Calabrese, D. Seppi, M. Puthenparampil, P. Perini, and P. Gallo, “Natalizumab strongly suppresses cortical pathology in relapsing-remitting multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 12, pp. 1760–1767, 2012.
  101. S. D. Wolff and R. S. Balaban, “Magnetization transfer imaging: practical aspects and clinical applications,” Radiology, vol. 192, no. 3, pp. 593–599, 1994. View at Scopus
  102. K. Schmierer, F. Scaravilli, D. R. Altmann, G. J. Barker, and D. H. Miller, “Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain,” Annals of Neurology, vol. 56, no. 3, pp. 407–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Cercignani, M. Bozzali, G. Iannucci, G. Comi, and M. Filippi, “Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 3, pp. 311–317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. K. T. M. Fernando, D. J. Tozer, K. A. Miszkiel et al., “Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis,” Brain, vol. 128, no. 12, pp. 2911–2925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. G. R. Davies, D. R. Altmann, A. Hadjiprocopis et al., “Increasing normal-appearing grey and white matter magnetisation transfer ratio abnormality in early relapsing-remitting multiple sclerosis,” Journal of Neurology, vol. 252, no. 9, pp. 1037–1044, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Dehmeshki, D. T. Chard, S. M. Leary et al., “The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study,” Journal of Neurology, vol. 250, no. 1, pp. 67–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Rovaris, M. Bozzali, G. Santuccio et al., “In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis,” Brain, vol. 124, no. 12, pp. 2540–2549, 2001. View at Scopus
  108. G. R. Davies, L. Ramió-Torrentà, A. Hadjiprocopis et al., “Evidence for grey matter MTR abnormality in minimally disabled patients with early relapsing-remitting multiple sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 7, pp. 998–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Rovaris, A. Gass, R. Bammer et al., “Diffusion MRI in multiple sclerosis,” Neurology, vol. 65, no. 10, pp. 1526–1532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Oreja-Guevara, M. Rovaris, G. Iannucci et al., “Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study,” Archives of Neurology, vol. 62, no. 4, pp. 578–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Rovaris, A. Gallo, P. Valsasina et al., “Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI,” NeuroImage, vol. 24, no. 4, pp. 1139–1146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. C. M. Dalton, P. A. Brex, R. Jenkins et al., “Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 2, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. J. H. Simon, “Brain atrophy in multiple sclerosis: what we know and would like to know,” Multiple Sclerosis, vol. 12, no. 6, pp. 679–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Calabrese, M. Atzori, V. Bernardi et al., “Cortical atrophy is relevant in multiple sclerosis at clinical onset,” Journal of Neurology, vol. 254, no. 9, pp. 1212–1220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Giorgio, M. Battaglini, S. M. Smith, and N. De Stefano, “Brain atrophy assessment in multiple sclerosis: importance and limitations,” Neuroimaging Clinics of North America, vol. 18, no. 4, pp. 675–686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. N. De Stefano, M. Battaglini, and S. M. Smith, “Measuring brain atrophy in multiple sclerosis,” Journal of Neuroimaging, vol. 17, no. 1, pp. 10S–15S, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Jasperse, P. Valsasina, V. Neacsu et al., “Intercenter Agreement of brain atrophy measurement in multiple sclerosis patients using manually-edited SIENA and SIENAX,” Journal of Magnetic Resonance Imaging, vol. 26, no. 4, pp. 881–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. S. M. Smith, Y. Zhang, M. Jenkinson et al., “Accurate, robust, and automated longitudinal and cross-sectional brain change analysis,” NeuroImage, vol. 17, no. 1, pp. 479–489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. V. M. Anderson, N. C. Fox, and D. H. Miller, “Magnetic resonance imaging measures of brain atrophy in multiple sclerosis,” Journal of Magnetic Resonance Imaging, vol. 23, no. 5, pp. 605–618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. N. C. Fox, R. Jenkins, S. M. Leary et al., “Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI,” Neurology, vol. 54, no. 4, pp. 807–812, 2000. View at Scopus
  121. S. M. Smith, N. De Stefano, M. Jenkinson, and P. M. Matthews, “Normalized accurate measurement of longitudinal brain change,” Journal of Computer Assisted Tomography, vol. 25, no. 3, pp. 466–475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Ashburner and K. J. Friston, “Voxel-based morphometry—the methods,” NeuroImage, vol. 11, no. 6, pp. 805–821, 2000. View at Publisher · View at Google Scholar · View at Scopus
  123. B. Fischl, A. Van Der Kouwe, C. Destrieux et al., “Automatically parcellating the human cerebral cortex,” Cerebral Cortex, vol. 14, no. 1, pp. 11–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Vrenken, M. Jenkinson, M. A. Horsfield, et al., “Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis,” Journal of Neurology. In press.
  125. R. Gelineau-Morel, V. Tomassini, M. Jenkinson, H. Johansen-Berg, P. M. Matthews, and J. Palace, “The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis,” Human Brain Mapping, vol. 33, pp. 2802–2814, 2012.
  126. M. Derakhshan, Z. Caramanos, P. S. Giacomini et al., “Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis,” NeuroImage, vol. 52, no. 4, pp. 1261–1267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. D. T. Chard, G. J. M. Parker, C. M. B. Griffin, A. J. Thompson, and D. H. Miller, “The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology,” Journal of Magnetic Resonance Imaging, vol. 15, no. 3, pp. 259–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Ceccarelli, J. S. Jackson, S. Tauhid, et al., “The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis,” American Journal of Neuroradiology, vol. 33, pp. 1579–1585, 2012.
  129. M. Battaglini, M. Jenkinson, and N. De Stefano, “Evaluating and reducing the impact of white matter lesions on brain volume measurements,” Human Brain Mapping, vol. 33, pp. 2062–2071, 2012.
  130. M. Calabrese and P. Gallo, “Magnetic resonance evidence of cortical onset of multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 8, pp. 933–941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Giorgio, M. L. Stromillo, F. Rossi et al., “Cortical lesions in radiologically isolated syndrome,” Neurology, vol. 77, no. 21, pp. 1896–1899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Filippi, M. A. Rocca, M. Calabrese et al., “Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis,” Neurology, vol. 75, no. 22, pp. 1988–1994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. M. P. Sanfilipo, R. H. B. Benedict, B. Weinstock-Guttman, and R. Bakshi, “Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis,” Neurology, vol. 66, no. 5, pp. 685–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Calabrese, M. A. Rocca, M. Atzori et al., “Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study,” Neurology, vol. 72, no. 15, pp. 1330–1336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Calabrese, A. Favaretto, V. Poretto et al., “Low degree of cortical pathology is associated with benign course of multiple sclerosis,” Multiple Sclerosis, vol. 19, no. 7, pp. 904–911, 2013.
  136. N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 12, pp. 1139–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Calabrese, D. Seppi, C. Romualdi et al., “Gray matter pathology in MS: a 3-year longitudinal study in a pediatric population,” American Journal of Neuroradiology, vol. 33, pp. 1507–1511, 2012.
  138. M. Calabrese, F. Rinaldi, P. Grossi, and P. Gallo, “Cortical pathology and cognitive impairment in multiple sclerosis,” Expert Review of Neurotherapeutics, vol. 11, no. 3, pp. 425–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. D. Horakova, T. Kalincik, J. Blahova Dusankova, and O. Dolezal, “Clinical correlates of grey matter pathology in multiple sclerosis,” BMC Neurology, vol. 12, article 10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  140. V. M. Anderson, L. K. Fisniku, D. R. Altmann, A. J. Thompson, and D. H. Miller, “MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction,” Multiple Sclerosis, vol. 15, no. 7, pp. 811–817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. F. Rinaldi, M. Calabrese, D. Seppi, M. Puthenparampil, P. Perini, and P. Gallo, “Natalizumab prevents the accumulation of cortical lesions in relapsing remitting multiple sclerosis: a preliminary report,” Neurological Sciences, vol. 31, pp. 317–320, 2011. View at Scopus
  142. M. Tiberio, D. T. Chard, D. R. Altmann et al., “Gray and white matter volume changes in early RRMS: a 2-year longitudinal study,” Neurology, vol. 64, no. 6, pp. 1001–1007, 2005. View at Scopus