About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2010 (2010), Article ID 894374, 14 pages
http://dx.doi.org/10.1155/2010/894374
Research Article

Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

1Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
2Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
3Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
4Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
5Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA

Received 28 July 2010; Revised 18 November 2010; Accepted 27 December 2010

Academic Editor: Małgorzata Kossut

Copyright © 2010 Avery S. Walker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.