About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2011 (2011), Article ID 875307, 6 pages
http://dx.doi.org/10.1155/2011/875307
Research Article

Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

1Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
2Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
3Department of Psychiatry, College of Physicians and Surgeons, Unit # 126, 1051 Riverside Drive, New York, NY 10032, USA
4Department of Psychiatry, State University of New York Downstate Medical Center, Nonhuman Primate Facility, Department of Psychiatry, Brooklyn, NY, USA
5Department of Surgery, SUNY Downstate Medical Center, Brooklyn, NY, USA

Received 19 November 2010; Revised 6 April 2011; Accepted 10 May 2011

Academic Editor: Anthony Hannan

Copyright © 2011 Tarique D. Perera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. L. Davidson, S. E. Kanoski, L. A. Schier, D. J. Clegg, and S. C. Benoit, “A potential role for the hippocampus in energy intake and body weight regulation,” Current Opinion in Pharmacology, vol. 7, no. 6, pp. 613–616, 2007. View at Publisher · View at Google Scholar · View at PubMed
  2. G.-J. Wang, J. Yang, N. D. Volkow et al., “Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15641–15645, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. L. A. Cenquizca and L. W. Swanson, “Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat,” Journal of Comparative Neurology, vol. 497, no. 1, pp. 101–114, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. A. Tremblay, “Dietary fat and body weight set point,” Nutrition Reviews, vol. 62, no. 7, pp. S75–S77, 2004.
  5. A. H. El-Gharbawy, D. C. Adler-Wailes, M. C. Mirch et al., “Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3548–3552, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. M. N. Haan and R. Wallace, “Can dementia be prevented? Brain aging in a population-based context,” Annual Review of Public Health, vol. 25, pp. 1–24, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. G. J. Biessels and W. H. Gispen, “The impact of diabetes on cognition: what can be learned from rodent models?” Neurobiology of Aging, vol. 26, supplement, pp. S36–S41, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. Y. Tozuka, M. Kumon, E. Wada, M. Onodera, H. Mochizuki, and K. Wada, “Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring,” Neurochemistry International, vol. 57, no. 3, pp. 235–247, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. M. D. Niculescu and D. S. Lupu, “High fat diet-induced maternal obesity alters fetal hippocampal development,” International Journal of Developmental Neuroscience, vol. 27, no. 7, pp. 627–633, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. Y. Tozuka, E. Wada, and K. Wada, “Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring,” FASEB Journal, vol. 23, no. 6, pp. 1920–1934, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. A. Lindqvist, P. Mohapel, B. Bouter et al., “High-fat diet impairs hippocampal neurogenesis in male rats,” European Journal of Neurology, vol. 13, no. 12, pp. 1385–1388, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. M. V. Kokoeva, H. Yin, and J. S. Flier, “Neurogenesis in the hypothalamus of adult mice: potential role in energy balance,” Science, vol. 310, no. 5748, pp. 679–683, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. F. Matrisciano, A. M. E. Modafferi, G. I. Togna et al., “Repeated anabolic androgenic steroid treatment causes antidepressant-reversible alterations of the hypothalamic-pituitary-adrenal axis, BDNF levels and behavior,” Neuropharmacology, vol. 58, no. 7, pp. 1078–1084, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. T. D. Perera, J. D. Coplan, S. H. Lisanby et al., “Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates,” Journal of Neuroscience, vol. 27, no. 18, pp. 4894–4901, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. Czéh, T. Michaelis, T. Watanabe et al., “Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12796–12801, 2001. View at Publisher · View at Google Scholar · View at PubMed
  16. L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. D. Coplan, M. W. Andrews, L. A. Rosenblum et al., “Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1619–1623, 1996.
  18. L. A. Rosenblum, C. Forger, S. Noland, R. C. Trost, and J. D. Coplan, “Response of adolescent bonnet macaques to an acute fear stimulus as a function of early rearing conditions,” Developmental Psychobiology, vol. 39, no. 1, pp. 40–45, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. Kaufman, E. L. P. Smith, B. C. Gohil et al., “Early appearance of the metabolic syndrome in socially reared bonnet macaques,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 1, pp. 404–408, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. T. D. Perera, A. J. Dwork, K. A. Keegan et al., “Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult Nonhuman primates,” PLoS ONE, vol. 6, no. 4, article e17600, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. A. Jackowski, T. D. Perera, C. G. Abdallah et al., “Early-life stress, corpus callosum development, hippocampal volumetrics, and anxious behavior in male nonhuman primates,” Psychiatry Research, vol. 192, no. 1, pp. 37–44, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. H. D. Schmidt and R. S. Duman, “Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models,” Neuropsychopharmacology, vol. 35, no. 12, pp. 2378–2391, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. H. R. Park, M. Park, J. Choi, K.-Y. Park, H. Y. Chung, and J. Lee, “A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor,” Neuroscience Letters, vol. 482, no. 3, pp. 235–239, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. A. Lindqvist, P. Mohapel, B. Bouter et al., “High-fat diet impairs hippocampal neurogenesis in male rats,” European Journal of Neurology, vol. 13, no. 12, pp. 1385–1388, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. M. Stranahan, E. D. Norman, K. Lee et al., “Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats,” Hippocampus, vol. 18, no. 11, pp. 1085–1088, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. A. Fox and M. S. Byerly, “A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants,” American Journal of Physiology, vol. 286, no. 6, pp. R994–R1004, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. Rossi, A. Angelucci, L. Costantin et al., “Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment,” European Journal of Neuroscience, vol. 24, no. 7, pp. 1850–1856, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Toriya, F. Maekawa, Y. Maejima et al., “Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus,” Journal of Neuroendocrinology, vol. 22, no. 9, pp. 987–995, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. J. Gray, G. S. H. Yeo, J. J. Cox et al., “Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene,” Diabetes, vol. 55, no. 12, pp. 3366–3371, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” Journal of Comparative Neurology, vol. 425, no. 4, pp. 479–494, 2000. View at Publisher · View at Google Scholar
  31. T. Nakagawa, A. Tsuchida, Y. Itakura et al., “Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice,” Diabetes, vol. 49, no. 3, pp. 436–444, 2000.
  32. Z. -J. Zhang, Z. -J. Yao, W. Liu, Q. Fang, and G. P. Reynolds, “Effects of antipsychotics on fat deposition and changes in leptin and insulin levels: magnetic resonance imaging study of previously untreated people with schizophrenia,” British Journal of Psychiatry, vol. 184, pp. 58–62, 2004. View at Publisher · View at Google Scholar
  33. S. M. Haffner, R. D'Agostino Jr., L. Mykkänen et al., “Insulin sensitivity in subjects with type 2 diabetes: relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study,” Diabetes Care, vol. 22, no. 4, pp. 562–568, 1999.
  34. J. C. Garza, M. Guo, W. Zhang, and X. Y. Lu, “Leptin increases adult hippocampal neurogenesis in vivo and in vitro,” Journal of Biological Chemistry, vol. 283, no. 26, pp. 18238–18247, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus