About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2011 (2011), Article ID 960389, 11 pages
http://dx.doi.org/10.1155/2011/960389
Review Article

Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK

Received 15 April 2011; Revised 14 June 2011; Accepted 23 June 2011

Academic Editor: Christian Leibold

Copyright © 2011 Josef H. L. P. Sadowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Scoville and B. Milner, “Loss of recent memory after bilateral hippocampal lesions,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, pp. 11–21, 1957. View at Scopus
  2. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Scopus
  3. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. D. O. Hebb, Organization of Behavior: A Neuropsychological Theory, Wiley-Interscience, New York, NY, USA, 1949.
  5. G. Buzsaki, “Two-stage model of memory trace formation: a role for ‘noisy’ brain states,” Neuroscience, vol. 31, no. 3, pp. 551–570, 1989. View at Publisher · View at Google Scholar · View at Scopus
  6. G. E. P Muller and A. Pilzecker, “Experimentelle beiträge zur lehre vom gedächtnis,” Zeitschrift für Psychologie, Ergänzungsband, vol. 1, no. 1, pp. 1–300, 1900.
  7. L. R. Squire, “Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans,” Psychological Review, vol. 99, no. 2, pp. 195–231, 1992. View at Scopus
  8. J. Fell, P. Klaver, K. Lehnertz et al., “Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling,” Nature Neuroscience, vol. 4, no. 12, pp. 1259–1264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, and M. B. Zugaro, “Selective suppression of hippocampal ripples impairs spatial memory,” Nature Neuroscience, vol. 12, no. 10, pp. 1222–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Ego-Stengel and M. A. Wilson, “Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat,” Hippocampus, vol. 20, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Axmacher, C. E. Elger, and J. Fell, “Ripples in the medial temporal lobe are relevant for human memory consolidation,” Brain, vol. 131, no. 7, pp. 1806–1817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Buzsaki, “Hippocampal sharp waves: their origin and significance,” Brain Research, vol. 398, no. 2, pp. 242–252, 1986. View at Scopus
  13. T. Nakashiba, D. L. Buhl, T. J. McHugh, and S. Tonegawa, “Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory,” Neuron, vol. 62, no. 6, pp. 781–787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Buzsáki and J. J. Chrobak, “Synaptic plasticity and self-organization in the hippocampus,” Nature Neuroscience, vol. 8, no. 11, pp. 1418–1420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Csicsvari, H. Hirase, A. Czurkó, A. Mamiya, and G. Buzsáki, “Fast network oscillations in the hippocampal CA1 region of the behaving rat,” The Journal of neuroscience, vol. 19, no. 16, p. RC20, 1999. View at Scopus
  16. G. M. Wittenberg and S. S. H. Wang, “Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse,” Journal of Neuroscience, vol. 26, no. 24, pp. 6610–6617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. A. Buchanan and J. R. Mellor, “The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones,” Journal of Physiology, vol. 585, no. 2, pp. 429–445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. A. Buchanan and J. R. Mellor, “The activity requirements for spike timing-dependent plasticity in the hippocampus,” Frontiers in Synaptic Neuroscience, vol. 2, article 11, 2010. View at Publisher · View at Google Scholar
  19. S. Song and L. F. Abbott, “Cortical development and remapping through spike timing-dependent plasticity,” Neuron, vol. 32, no. 2, pp. 339–350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Cole and R. A. Nicoll, “Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells,” Science, vol. 221, no. 4617, pp. 1299–1301, 1983. View at Scopus
  21. A. E. Cole and R. A. Nicoll, “The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells,” Brain Research, vol. 305, no. 2, pp. 283–290, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. M. E. Hasselmo, “Neuromodulation: acetylcholine and memory consolidation,” Trends in Cognitive Sciences, vol. 3, no. 9, pp. 351–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. J. O'Keefe and J. Dostrovsky, “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat,” Brain Research, vol. 34, no. 1, pp. 171–175, 1971. View at Scopus
  24. J. O'Keefe and D. H. Conway, “Hippocampal place units in the freely moving rat: why they fire where they fire,” Experimental Brain Research, vol. 31, no. 4, pp. 573–590, 1978. View at Scopus
  25. J. O'Keefe and N. Burgess, “Geometric determinants of the place fields of hippocampal neurons,” Nature, vol. 381, no. 6581, pp. 426–428, 1996. View at Scopus
  26. J. O'Keefe and L. Nadel, The Hippocampus As a Cognitive Map, Clarendon Press, Oxford, UK, 1978.
  27. M. A. Wilson and B. L. McNaughton, “Dynamics of the hippocampal ensemble code for space,” Science, vol. 261, no. 5124, pp. 1055–1058, 1993. View at Scopus
  28. B. Poucet, E. Save, and P. P. Lenck-Santini, “Sensory and memory properties of hippocampal place cells,” Reviews in the Neurosciences, vol. 11, no. 2-3, pp. 95–111, 2000. View at Scopus
  29. A. Treves and E. T. Rolls, “Computational analysis of the role of the hippocampus in memory,” Hippocampus, vol. 4, no. 3, pp. 374–391, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. E. T. Rolls, “A computational theory of episodic memory formation in the hippocampus,” Behavioural Brain Research, vol. 215, no. 2, pp. 180–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Derdikman and E. I. Moser, “A manifold of spatial maps in the brain,” Trends in Cognitive Sciences, vol. 14, no. 12, pp. 561–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. H. Vanderwolf, “Hippocampal electrical activity and voluntary movement in the rat,” Electroencephalography and Clinical Neurophysiology, vol. 26, no. 4, pp. 407–418, 1969. View at Scopus
  33. G. Buzsáki, “Theta oscillations in the hippocampus,” Neuron, vol. 33, no. 3, pp. 325–340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. J. O'Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus, vol. 3, no. 3, pp. 317–330, 1993. View at Scopus
  35. W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes, “Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences,” Hippocampus, vol. 6, no. 2, pp. 149–172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Bernard and H. V. Wheal, “Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus,” Hippocampus, vol. 4, no. 5, pp. 497–529, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. B. A. MacVicar and F. E. Dudek, “Local synaptic circuits in rat hippocampus: interactions between pyramidal cells,” Brain Research, vol. 184, no. 1, pp. 220–223, 1980. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Miles and R. K. S. Wong, “Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus,” Journal of Physiology, vol. 373, pp. 397–418, 1986. View at Scopus
  39. J. Deuchars and A. M. Thomson, “CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling,” Neuroscience, vol. 74, no. 4, pp. 1009–1018, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Nakazawa, L. D. Sun, M. C. Quirk, L. Rondi-Reig, M. A. Wilson, and S. Tonegawa, “Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience,” Neuron, vol. 38, no. 2, pp. 305–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. R. U. Muller, M. Stead, and J. Pach, “The hippocampus as a cognitive graph,” Journal of General Physiology, vol. 107, no. 6, pp. 663–694, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Marr, “Simple memory: a theory for archicortex,” Philosophical Transactions of the Royal Society of London B, vol. 262, no. 841, pp. 23–81, 1971. View at Scopus
  43. J. T. R. Isaac, K. A. Buchanan, R. U. Muller, and J. R. Mellor, “Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro,” Journal of Neuroscience, vol. 29, no. 21, pp. 6840–6850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. F. Carr, S. P. Jadhav, and L. M. Frank, “Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval,” Nature Neuroscience, vol. 14, no. 2, pp. 147–153, 2011. View at Publisher · View at Google Scholar
  45. W. E. Skaggs and B. L. McNaughton, “Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience,” Science, vol. 271, no. 5257, pp. 1870–1873, 1996. View at Scopus
  46. M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,” Science, vol. 265, no. 5172, pp. 676–679, 1994. View at Scopus
  47. J. O'Neill, T. J. Senior, K. Allen, J. R. Huxter, and J. Csicsvari, “Reactivation of experience-dependent cell assembly patterns in the hippocampus,” Nature Neuroscience, vol. 11, no. 2, pp. 209–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Louie and M. A. Wilson, “Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep,” Neuron, vol. 29, no. 1, pp. 145–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Lee and M. A. Wilson, “Memory of sequential experience in the hippocampus during slow wave sleep,” Neuron, vol. 36, no. 6, pp. 1183–1194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal place cells during the awake state,” Nature, vol. 440, no. 7084, pp. 680–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Diba and G. Buzsáki, “Forward and reverse hippocampal place-cell sequences during ripples,” Nature Neuroscience, vol. 10, no. 10, pp. 1241–1242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. C. S. Lansink, P. M. Goltstein, J. V. Lankelma, B. L. McNaughton, and C. M. A. Pennartz, “Hippocampus leads ventral striatum in replay of place-reward information,” PLoS Biology, vol. 7, no. 8, Article ID e1000173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. D. R. Euston, M. Tatsuno, and B. L. McNaughton, “Fast-forward playback of recent memory sequences in prefrontal cortex during sleep,” Science, vol. 318, no. 5853, pp. 1147–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Ji and M. A. Wilson, “Coordinated memory replay in the visual cortex and hippocampus during sleep,” Nature Neuroscience, vol. 10, no. 1, pp. 100–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Maquet, S. Laureys, P. Peigneux et al., “Experience-dependent changes in changes in cerebral activation during human REM sleep,” Nature Neuroscience, vol. 3, no. 8, pp. 831–836, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. M. P. Walker and R. Stickgold, “Sleep, memory, and plasticity,” Annual Review of Psychology, vol. 57, pp. 139–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Rudoy, J. L. Voss, C. E. Westerberg, and K. A. Paller, “Strengthening individual memories by reactivating them during sleep,” Science, vol. 326, no. 5956, p. 1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Rasch, C. Büchel, S. Gais, and J. Born, “Odor cues during slow-wave sleep prompt declarative memory consolidation,” Science, vol. 315, no. 5817, pp. 1426–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Mölle, O. Yeshenko, L. Marshall, S. J. Sara, and J. Born, “Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep,” Journal of Neurophysiology, vol. 96, no. 1, pp. 62–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Eschenko, W. Ramadan, M. Mölle, J. Born, and S. J. Sara, “Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning,” Learning and Memory, vol. 15, no. 4, pp. 222–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Nádasdy, H. Hirase, A. Czurkó, J. Csicsvari, and G. Buzsáki, “Replay and time compression of recurring spike sequences in the hippocampus,” Journal of Neuroscience, vol. 19, no. 21, pp. 9497–9507, 1999.
  62. F. Marrosu, C. Portas, M. S. Mascia et al., “Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats,” Brain Research, vol. 671, no. 2, pp. 329–332, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. K. A. Buchanan, M. M. Petrovic, S. E. L. Chamberlain, N. V. Marrion, and J. R. Mellor, “Facilitation of long-term potentiation by muscarinic M1 receptors Is mediated by inhibition of SK channels,” Neuron, vol. 68, no. 5, pp. 948–963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. J. Giessel and B. L. Sabatini, “M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels,” Neuron, vol. 68, no. 5, pp. 936–947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. O'Neill, T. Senior, and J. Csicsvari, “Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior,” Neuron, vol. 49, no. 1, pp. 143–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. E. Hasselmo, E. Schnell, and E. Barkai, “Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3,” Journal of Neuroscience, vol. 15, no. 7, pp. 5249–5262, 1995. View at Scopus
  67. L. Kvirkvelia, G. Buzsáki, and E. Grastyán, “Septal deafferentation produces continuous rhythmic slow activity (theta) in the rat hippocampus,” Acta Physiologica Hungarica, vol. 70, no. 1, pp. 127–131, 1987.
  68. G. Buzsàki, J. Czopf, I. KondÀkor, A. Björklund, and F. H. Gage, “Cellular activity of intracerebrally transplanted fetal hippocampus during behavior,” Neuroscience, vol. 22, no. 3, pp. 871–883, 1987.
  69. G. Buzsaki, F. H. Gage, J. Czopf, and A. Bjorklund, “Restoration of rhythmic slow activity (θ) in the subcortically denervated hippocampus by fetal CNS transplants,” Brain Research, vol. 400, no. 2, pp. 334–347, 1987. View at Scopus
  70. G. Buzsaki, F. H. Gage, L. Kellenyi, and A. Bjorklund, “Behavioral dependence of the electrical activity of intracerebrally transplanted fetal hippocampus,” Brain Research, vol. 400, no. 2, pp. 321–333, 1987. View at Scopus
  71. J. M. Fellous and T. J. Sejnowski, “Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands,” Hippocampus, vol. 10, no. 2, pp. 187–197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Kubota, L. L. Colgin, M. Casale, F. A. Brucher, and G. Lynch, “Endogenous waves in hippocampal slices,” Journal of Neurophysiology, vol. 89, no. 1, pp. 81–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. D. V. Madison and R. A. Nicoll, “Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus,” Nature, vol. 299, no. 5884, pp. 636–638, 1982. View at Scopus
  74. R. C. Malenka and R. A. Nicoll, “Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells,” Brain Research, vol. 379, no. 2, pp. 210–215, 1986. View at Scopus
  75. L. S. Bernardo and D. A. Prince, “Dopamine action on hippocampal pyramidal cells,” Journal of Neuroscience, vol. 2, no. 4, pp. 415–423, 1982. View at Scopus
  76. R. Andrade and R. A. Nicoll, “Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro,” Journal of Physiology, vol. 394, pp. 99–124, 1987. View at Scopus
  77. S. Li, W. K. Cullen, R. Anwyl, and M. J. Rowan, “Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty,” Nature Neuroscience, vol. 6, no. 5, pp. 526–531, 2003. View at Scopus
  78. J. J. Kim and D. M. Diamond, “The stressed hippocampus, synaptic plasticity and lost memories,” Nature Reviews Neuroscience, vol. 3, no. 6, pp. 453–462, 2002. View at Scopus
  79. J. Csicsvari, J. O'Neill, K. Allen, and T. Senior, “Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration,” European Journal of Neuroscience, vol. 26, no. 3, pp. 704–716, 2007. View at Publisher · View at Google Scholar
  80. M. P. Karlsson and L. M. Frank, “Awake replay of remote experiences in the hippocampus,” Nature Neuroscience, vol. 12, no. 7, pp. 913–918, 2009. View at Publisher · View at Google Scholar
  81. S. Cheng and L. M. Frank, “New experiences enhance coordinated neural activity in the hippocampus,” Neuron, vol. 57, no. 2, pp. 303–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Dupret, J. O'Neill, B. Pleydell-Bouverie, and J. Csicsvari, “The reorganization and reactivation of hippocampal maps predict spatial memory performance,” Nature Neuroscience, vol. 13, no. 8, pp. 995–1002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Dragoi, K. D. Harris, and G. Buzsáki, “Place representation within hippocampal networks is modified by long-term potentiation,” Neuron, vol. 39, no. 5, pp. 843–853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Dupret, B. Pleydell-Bouverie, and J. Csicsvari, “Rate remapping: when the code goes beyond space,” Neuron, vol. 68, no. 6, pp. 1015–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Alvarez and L. R. Squire, “Memory consolidation and the medial temporal lobe: a simple network model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7041–7045, 1994. View at Publisher · View at Google Scholar · View at Scopus
  86. J. E. Lisman and N. A. Otmakhova, “Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine,” Hippocampus, vol. 11, no. 5, pp. 551–568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. K. I. Blum and L. F. Abbott, “A model of spatial map formation in the hippocampus of the rat,” Neural Computation, vol. 8, no. 1, pp. 85–93, 1996. View at Scopus
  88. A. V. Samsonovich and G. A. Ascoli, “A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval,” Learning and Memory, vol. 12, no. 2, pp. 193–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Nakazawa, M. C. Quirk, R. A. Chitwood et al., “Requirement for hippocampal CA3 NMDA receptors in associative memory recall,” Science, vol. 297, no. 5579, pp. 211–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Nakazawa, T. J. McHugh, M. A. Wilson, and S. Tonegawa, “NMDA receptors, place cells and hippocampal spatial memory,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 361–372, 2004. View at Scopus
  91. K. D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsáki, “Organization of cell assemblies in the hippocampus,” Nature, vol. 424, no. 6948, pp. 552–556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Csicsvari, H. Hirase, A. Mamiya, and G. Buzsáki, “Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events,” Neuron, vol. 28, no. 2, pp. 585–594, 2000. View at Scopus
  93. S. Leutgeb, J. K. Leutgeb, A. Treves, M. B. Moser, and E. I. Moser, “Distinct ensemble codes in hippocampal areas CA3 and CA1,” Science, vol. 305, no. 5688, pp. 1295–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. L. W. Swanson, “A direct projection from Ammon's horn to prefrontal cortex in the rat,” Brain Research, vol. 217, no. 1, pp. 150–154, 1981. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Laroche, T. M. Jay, and A. M. Thierry, “Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region,” Neuroscience Letters, vol. 114, no. 2, pp. 184–190, 1990. View at Publisher · View at Google Scholar · View at Scopus
  96. S. M. O'Mara, S. Commins, and M. Anderson, “Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory,” Hippocampus, vol. 10, no. 4, pp. 447–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. M. W. Jones and M. A. Wilson, “Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task,” PLoS Biology, vol. 3, no. 12, article e402, 13 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. M. W. Jones and M. A. Wilson, “Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm,” Hippocampus, vol. 15, no. 7, pp. 867–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. A. G. Siapas and M. A. Wilson, “Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep,” Neuron, vol. 21, no. 5, pp. 1123–1128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. Z. Clemens, M. Mölle, L. Eross, P. Barsi, P. Halász, and J. Born, “Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans,” Brain, vol. 130, no. 11, pp. 2868–2878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Rosanova and D. Ulrich, “Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train,” Journal of Neuroscience, vol. 25, no. 41, pp. 9398–9405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Sirota, J. Csicsvari, D. Buhl, and G. Buzsáki, “Communication between neocortex and hippocampus during sleep in rodents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2065–2069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Dragoi and S. Tonegawa, “Preplay of future place cell sequences by hippocampal cellular assemblies,” Nature, vol. 469, no. 7330, pp. 397–401, 2011. View at Publisher · View at Google Scholar
  104. M. P. Walker, T. Brakefield, J. A. Hobson, and R. Stickgold, “Dissociable stages of human memory consolidation and reconsolidation,” Nature, vol. 425, no. 6958, pp. 616–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Dudai, “Reconsolidation: the advantage of being refocused,” Current Opinion in Neurobiology, vol. 16, no. 2, pp. 174–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Moscovitch, L. Nadel, G. Winocur, A. Gilboa, and R. S. Rosenbaum, “The cognitive neuroscience of remote episodic, semantic and spatial memory,” Current Opinion in Neurobiology, vol. 16, no. 2, pp. 179–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. J. R. Misanin, R. R. Miller, and D. J. Lewis, “Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace,” Science, vol. 160, no. 3827, pp. 554–555, 1968. View at Scopus
  108. S. Diekelmann, C. Büchel, J. Born, and B. Rasch, “Labile or stable: opposing consequences for memory when reactivated during waking and sleep,” Nature Neuroscience, vol. 14, no. 3, pp. 381–386, 2011. View at Publisher · View at Google Scholar
  109. S. Gais, G. Albouy, M. Boly et al., “Sleep transforms the cerebral trace of declarative memories,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18778–18783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Z. Tsien, P. T. Huerta, and S. Tonegawa, “The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory,” Cell, vol. 87, no. 7, pp. 1327–1338, 1996. View at Publisher · View at Google Scholar · View at Scopus
  111. M. R. Mehta, C. A. Barnes, and B. L. Mcnaughton, “Experience-dependent, asymmetric expansion of hippocampal place fields,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8918–8921, 1997. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Kentros, E. Hargreaves, R. D. Hawkins, E. R. Kandel, M. Shapiro, and R. V. Muller, “Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade,” Science, vol. 280, no. 5372, pp. 2121–2126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Leutgeb, J. K. Leutgeb, E. I. Moser, and M. B. Moser, “Fast rate coding in hippocampal CA3 cell ensembles,” Hippocampus, vol. 16, no. 9, pp. 765–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. J. M. Siegel, “The REM sleep-memory consolidation hypothesis,” Science, vol. 294, no. 5544, pp. 1058–1063, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. U. Wagner, S. Gais, and J. Born, “Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep,” Learning and Memory, vol. 8, no. 2, pp. 112–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Gais, W. Plihal, U. Wagner, and J. Born, “Early sleep triggers memory for early visual discrimination skills,” Nature Neuroscience, vol. 3, no. 12, pp. 1335–1339, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Rasch, J. Pommer, S. Diekelmann, and J. Born, “Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory,” Nature Neuroscience, vol. 12, no. 4, pp. 396–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Röllig, J. Babatz, I. Wagner et al., “Thawing of cryopreserved mobilized peripheral blood—Comparison between waterbath and dry warming device,” Cytotherapy, vol. 4, no. 6, pp. 551–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. U. Wagner, S. Fischer, and J. Born, “Changes in emotional responses to aversive pictures across periods rich in slow-wave sleep versus rapid eye movement sleep,” Psychosomatic Medicine, vol. 64, no. 4, pp. 627–634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. D. S. Manoach and R. Stickgold, “Does abnormal sleep impair memory consolidation in schizophrenia?” Frontiers in Human Neuroscience, vol. 3, article 21, 2009. View at Publisher · View at Google Scholar
  121. F. Ferrarelli, R. Huber, M. J. Peterson et al., “Reduced sleep spindle activity in schizophrenia patients,” American Journal of Psychiatry, vol. 164, no. 3, pp. 483–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Ferrarelli, M. J. Peterson, S. Sarasso et al., “Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles,” American Journal of Psychiatry, vol. 167, no. 11, pp. 1339–1348, 2010. View at Publisher · View at Google Scholar · View at Scopus