About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 250421, 10 pages
http://dx.doi.org/10.1155/2012/250421
Research Article

IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

1Laboratory of Neurobiology, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
2Institute of Neuroscience, CNR, Via Moruzzi 1, 56100 Pisa, Italy
3Neuroscience Centre, University of Helsinki, 00014 Helsinki, Finland

Received 10 February 2012; Accepted 1 April 2012

Academic Editor: Małgorzata Kossut

Copyright © 2012 José Fernando Maya-Vetencourt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Berardi, T. Pizzorusso, and L. Maffei, “Critical periods during sensory development,” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 138–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Wiesel and D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision,” Journal of Neurophysiology, vol. 26, pp. 1003–1017, 1963. View at Scopus
  5. D. H. Hubel and T. Wiesel, “The period of susceptibility to the physiological effects of unilateral eye closure in kittens,” Journal of Physiology, vol. 206, no. 2, pp. 419–436, 1970. View at Scopus
  6. M. Fagiolini and T. K. Hensch, “Inhibitory threshold for critical-period activation in primary visual cortex,” Nature, vol. 404, no. 6774, pp. 183–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sugiyama, A. A. Di Nardo, S. Aizawa et al., “Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity,” Cell, vol. 134, no. 3, pp. 508–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Y. He, W. Hodos, and E. M. Quinlan, “Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex,” Journal of Neuroscience, vol. 26, no. 11, pp. 2951–2955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Maya-Vetencourt, A. Sale, A. Viegi et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Baroncelli, A. Sale, A. Viegi et al., “Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex,” Experimental Neurology, vol. 226, no. 1, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Morishita, J. M. Miwa, N. Heintz, and T. K. Hensch, “Lynx1, a cholinergic brake, limits plasticity in adult visual cortex,” Science, vol. 330, no. 6008, pp. 1238–1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Spolidoro, L. Baroncelli, E. Putignano, J. F. Maya-Vetencourt, A. Viegi, and L. Maffei, “Food restriction enhances visual cortex plasticity in adulthood,” Nature Communications, vol. 2, no. 1, article 320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Maya-Vetencourt, E. Tiraboschi, M. Spolidoro, E. Castren, and L. Maffei, “Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats,” European Journal of Neuroscience, vol. 33, no. 1, pp. 49–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. van Praag, G. Kempermann, and F. H. Gage, “Neural Consequences of environmental enrichment,” Nature Reviews Neuroscience, vol. 1, no. 3, pp. 191–198, 2006. View at Scopus
  17. A. Sale, N. Berardi, and L. Maffei, “Enrich the environment to empower the brain,” Trends in Neurosciences, vol. 32, no. 4, pp. 233–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Mainardi, S. Landi, L. Gianfranceschi et al., “Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex,” Journal of Neuroscience Research, vol. 88, no. 14, pp. 3048–3059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sale, J. F. Maya-Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Baroncelli, C. Braschi, M. Spolidoro, T. Begenisic, A. Sale, and L. Maffei, “Nurturing brain plasticity: impact of environmental enrichment,” Cell Death and Differentiation, vol. 17, no. 7, pp. 1092–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Torres-Aleman, “Insulin-like growth factors as mediators of functional plasticity in the adult brain,” Hormone and Metabolic Research, vol. 31, no. 2-3, pp. 114–119, 1999. View at Scopus
  22. M. A. I. Aberg, N. D. Aberg, H. Hedbacker, J. Oscarsson, and P. S. Eriksson, “Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus,” Journal of Neuroscience, vol. 20, no. 8, pp. 2896–2903, 2000. View at Scopus
  23. E. Carro, A. Nunez, S. Busiguina, and I. Torres-Aleman, “Circulating insulin-like growth factor I mediates effects of exercise on the brain,” Journal of Neuroscience, vol. 20, no. 8, pp. 2926–2933, 2000. View at Scopus
  24. J. L. Trejo, E. Carro, and I. Torres-Aleman, “Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus,” Journal of Neuroscience, vol. 21, no. 5, pp. 1628–1634, 2001. View at Scopus
  25. D. Tropea, G. Kreiman, A. Lyckman et al., “Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex,” Nature Neuroscience, vol. 9, no. 5, pp. 660–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Cancedda, E. Putignano, A. Sale, A. Viegi, N. Berardi, and L. Maffei, “Acceleration of visual system development by environmental enrichment,” Journal of Neuroscience, vol. 24, no. 20, pp. 4840–4848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Ciucci, E. Putignano, L. Baroncelli, S. Landi, N. Berardi, and L. Maffei, “Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development,” PLoS ONE, vol. 2, no. 5, Article ID e475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Guzzetta, S. Baldini, A. Bancale et al., “Massage accelerates brain development and the maturation of visual function,” Journal of Neuroscience, vol. 29, no. 18, pp. 6042–6051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Porciatti, T. Pizzorusso, and L. Maffei, “The visual physiology of the wild type mouse determined with pattern VEPs,” Vision Research, vol. 39, no. 18, pp. 3071–3081, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Y. Frenkel and M. F. Bear, “How monocular deprivation shifts ocular dominance in visual cortex of young mice,” Neuron, vol. 44, no. 6, pp. 917–923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. B. Sawtell, M. Y. Frenkel, B. D. Philpot, K. Nakazawa, S. Tonegawa, and M. F. Bear, “NMDA receptor-dependent ocular dominance plasticity in adult visual cortex,” Neuron, vol. 39, no. 4, p. 727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. A. Bondy and C. M. Cheng, “Insulin-like growth factor-1 promotes neuronal glucose utilization during brain development and repair processes,” International Review of Neurobiology, vol. 51, p. 189, 2002. View at Scopus
  33. L. Maffei, N. Berardi, L. Domenici, V. Parisi, and T. Pizzorusso, “Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats,” Journal of Neuroscience, vol. 12, no. 12, pp. 4651–4662, 1992. View at Scopus
  34. C. Lodovichi, N. Berardi, T. Pizzorusso, and L. Maffei, “Effects of neurotrophins on cortical plasticity: same or different?” Journal of Neuroscience, vol. 20, no. 6, pp. 2155–2165, 2000. View at Scopus
  35. L. Domenici, A. Cellerino, N. Berardi, A. Cattaneo, and L. Maffei, “Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat,” Neuroreport, vol. 5, no. 16, pp. 2041–2044, 1994. View at Scopus
  36. L. Lagostena, M. Rosato-Siri, M. D'Onofrio et al., “In the adult hippocampus, chronic nerve growth factor deprivation shifts GABAergic signaling from the hyperpolarizing to the depolarizing direction,” Journal of Neuroscience, vol. 30, no. 3, pp. 885–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Putignano, G. Lonetti, L. Cancedda et al., “Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity,” Neuron, vol. 53, no. 5, pp. 747–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Silingardi, M. Scali, G. Belluomini, and T. Pizzorusso, “Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation,” European Journal of Neuroscience, vol. 31, no. 12, pp. 2185–2192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. F. Maya-Vetencourt, “Plasticity of visual cortical circuitries in adulthood,” in Visual Cortex: Anatomy, Functions and Injuries, J. M. Harris and J. Scott, Eds., Nova Science Publishers, New York, NY, USA, 2012.
  40. N. Grunbaum-Novak, M. Taler, I. Gil-Ad, A. Weizman, H. Cohen, and R. Weizman, “Relationship between antidepressants and IGF-1 system in the brain: possible role in cognition,” European Neuropsychopharmacology, vol. 18, no. 6, pp. 431–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Khawaja, J. Xu, J. J. Liang, and J. E. Barrett, “Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: implications for depressive disorders and future therapies,” Journal of Neuroscience Research, vol. 75, no. 4, pp. 451–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Ding, S. Vaynman, M. Akhavan, Z. Ying, and F. Gomez-Pinilla, “Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function,” Neuroscience, vol. 140, no. 3, pp. 823–833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Keyvani, N. Sachser, O. W. Witte, and W. Paulus, “Gene expression profiling in the intact and injured brain following environmental enrichment,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 6, pp. 598–609, 2004. View at Scopus
  44. B. A. Hoshaw, T. I. Hill, J. J. Crowley et al., “Antidepressant-like behavioral effects of IGF-I produced by enhanced serotonin transmission,” European Journal of Pharmacology, vol. 594, no. 1–3, pp. 109–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. B. Ranke and M. Elmlinger, “Functional role of insulin-like growth factor binding proteins,” Hormone Research, vol. 48, no. 4, pp. 9–15, 1997. View at Scopus
  46. E. Tonner, G. Allan, L. Shkreta et al., “Insulin-like growth factor binding protein-5 (IGFBP-5) potentially regulates programmed cell death and plasminogen activation in the mammary gland,” Advances in Experimental Medicine and Biology, vol. 480, pp. 45–53, 2000. View at Scopus
  47. T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett, and L. Maffei, “Reactivation of ocular dominance plasticity in the adult visual cortex,” Science, vol. 298, no. 5596, pp. 1248–1251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi, and L. Maffei, “Structural and functional recovery from early monocular deprivation in adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8517–8522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Y. Chen, S. A. Stern, A. Garcia-Osta et al., “A critical role for IGF-II in memory consolidation and enhancement,” Nature, vol. 469, no. 7331, pp. 491–497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. L. I. Arwert, J. B. Deijen, and M. L. Drent, “The relation between insulin-like growth factor I levels and cognition in healthy elderly: a meta-analysis,” Growth Hormone and IGF Research, vol. 15, no. 6, pp. 416–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. G. Dik, S. M. F. Pluijm, C. Jonker, D. J. H. Deeg, M. Z. Lomecky, and P. Lips, “Insulin-like growth factor I (IGF-I) and cognitive decline in older persons,” Neurobiology of Aging, vol. 24, no. 4, pp. 573–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Kalmijn, J. A. M. J. L. Janssen, H. A. P. Pols, S. W. J. Lamberts, and M. M. B. Breteler, “A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4551–4555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Okereke, J. H. Kang, J. Ma, S. E. Hankinson, M. N. Pollak, and F. Grodstein, “Plasma IGF-I levels and cognitive performance in older women,” Neurobiology of Aging, vol. 28, no. 1, pp. 135–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Rollero, G. Murialdo, S. Fonzi et al., “Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects,” Neuropsychobiology, vol. 38, no. 2, pp. 73–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Mohamed-Ali and J. Pinkney, “Therapeutic potential of insulin-like growth factor-1 in patients with diabetes mellitus,” Treatments in Endocrinology, vol. 1, no. 6, pp. 399–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. P. V. Carroll, M. Umpleby, E. L. Alexander et al., “Recombinant human insulin-like growth factor-I (rhIGF-I) therapy in adults with type 1 diabetes mellitus: effects on IGFs, IGF-binding proteins, glucose levels and insulin treatment,” Clinical Endocrinology, vol. 49, no. 6, pp. 739–746, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. A. L. Rosenbloom, “The role of recombinant insulin-like growth factor I in the treatment of the short child,” Current Opinion in Pediatrics, vol. 19, no. 4, pp. 458–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. E. J. Richmond and A. D. Rogol, “Recombinant human insulin-like growth factor-I therapy for children with growth disorders,” Advances in Therapy, vol. 25, no. 12, pp. 1276–1287, 2008. View at Scopus
  59. M. E. Lewis, N. T. Neff, P. C. Contreras et al., “Insulin-like growth factor-I: potential for treatment of motor neuronal disorders,” Experimental Neurology, vol. 124, no. 1, pp. 73–88, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. S. A. Sakowski, A. D. Schuyler, and E. L. Feldman, “Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 10, no. 2, pp. 63–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. V. S. Dani, Q. Chang, A. Maffei, G. G. Turrigiano, R. Jaenisch, and S. B. Nelson, “Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 12560–12565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Fernandez, W. Morishita, E. Zuniga et al., “Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome,” Nature Neuroscience, vol. 10, no. 4, pp. 411–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. F. Maya-Vetencourt, M. Caleo, and L. Maffei, “Frontiers of neuronal plasticity: can we treat amblyopia in adulthood?” Ophthalmology International, vol. 4, p. 45, 2009.