About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 286215, 8 pages
http://dx.doi.org/10.1155/2012/286215
Research Article

GluA1 Phosphorylation Alters Evoked Firing Pattern In Vivo

1Bay Zoltán Foundation for Applied Research, BAYGEN, Közép Fasor 41, Szeged 6727, Hungary
2Department of Medical Chemistry, University of Szeged, Szeged, Hungary
3Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary
4Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary
5St John’s Collage, University of Oxford, Oxford, UK
6Behavioural & Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK

Received 7 November 2011; Revised 13 January 2012; Accepted 4 February 2012

Academic Editor: Maurizio Popoli

Copyright © 2012 Balázs Barkóczi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Hoffman, R. Sprengel, and B. Sakmann, “Molecular dissection of hippocampal theta-burst pairing potentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7740–7745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Jensen, K. M. M. Kaiser, T. Borchardt, et al., “A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A,” The Journal of Physiology, vol. 553, part 3, pp. 843–856, 2003. View at Publisher · View at Google Scholar
  3. R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Annual Review of Neuroscience, vol. 25, pp. 103–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Zamanillo, R. Sprengel, O. Hvalby et al., “Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning,” Science, vol. 284, no. 5421, pp. 1805–1811, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Riehle, S. Grun, M. Diesmann, and A. Aertsen, “Spike synchronization and rate modulation differentially involved in motor cortical function,” Science, vol. 278, no. 5345, pp. 1950–1953, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. W. B. Schmitt, R. Arianpour, R. M. J. Deacon et al., “The role of hippocampal glutamate receptor-A-dependent synaptic plasticity in conditional learning: the importance of spatiotemporal discontiguity,” Journal of Neuroscience, vol. 24, no. 33, pp. 7277–7282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. W. B. Schmitt, R. M. J. Deacon, P. H. Seeburg, J. N. P. Rawlins, and D. M. Bannerman, “A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice,” Journal of Neuroscience, vol. 23, no. 9, pp. 3953–3959, 2003. View at Scopus
  8. A. Barria, D. Muller, V. Derkach, L. C. Griffith, and T. R. Soderling, “Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation,” Science, vol. 276, no. 5321, pp. 2042–2045, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Mammen, K. Kameyama, K. W. Roche, and R. L. Huganir, “Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32528–32533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Buzsaki and J. J. Chrobak, “Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks,” Current Opinion in Neurobiology, vol. 5, no. 4, pp. 504–510, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Gray and W. Singer, “Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 5, pp. 1698–1702, 1989. View at Scopus
  12. J. J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature, vol. 376, no. 6535, pp. 33–36, 1995. View at Scopus
  13. E. Vaadia, I. Haalman, M. Abeles et al., “Dynamics of neuronal interactions in monkey cortex in relation to behavioural events,” Nature, vol. 373, no. 6514, pp. 515–518, 1995. View at Scopus
  14. H. Qi, F. Mailliet, M. Spedding et al., “Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation,” Neuropharmacology, vol. 56, no. 1, pp. 37–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Szegedi, G. Juhasz, X. Zhang et al., “Tianeptine potentiates AMPA receptors by activating CaMKII and PKA via the p38, p42/44 MAPK and JNK pathways,” Neurochemistry International, vol. 59, no. 8, pp. 1109–1122, 2011. View at Publisher · View at Google Scholar
  16. P. Svenningsson, H. Bateup, H. Qi et al., “Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine,” European Journal of Neuroscience, vol. 26, no. 12, pp. 3509–3517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. W. Daw, P. S. G. Stein, and K. Fox, “The role of NMDA receptors in information processing,” Annual Review of Neuroscience, vol. 16, pp. 207–222, 1993. View at Scopus
  18. C. Rivadulla, J. Sharma, and M. Sur, “Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex,” Journal of Neuroscience, vol. 21, no. 5, pp. 1710–1719, 2001. View at Scopus
  19. D. Colquhoun, P. Jonas, and B. Sakmann, “Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices,” The Journal of Physiology, vol. 458, pp. 261–287, 1992. View at Scopus
  20. S. Hestrin, “Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex,” Neuron, vol. 9, no. 5, pp. 991–999, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. McBain and M. L. Mayer, “N-methyl-D-aspartic acid receptor structure and function,” Physiological Reviews, vol. 74, no. 3, pp. 723–760, 1994. View at Scopus
  22. C. L. Kussius, N. Kaur, and G. K. Popescu, “Pregnanolone sulfate promotes desensitization of activated NMDA receptors,” Journal of Neuroscience, vol. 29, no. 21, pp. 6819–6827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Kato and A. F. Weitsch, “Neurochemical profile of tianeptine, a new antidepressant drug,” Clinical Neuropharmacology, vol. 11, supplement 2, pp. S43–S50, 1988. View at Scopus
  24. B. S. McEwen, S. Chattarji, D. M. Diamond et al., “The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation,” Molecular Psychiatry, vol. 15, no. 3, pp. 237–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Kauer, R. C. Malenka, and R. A. Nicoll, “A persistent postsynaptic modification mediates long-term potentiation in the hippocampus,” Neuron, vol. 1, no. 10, pp. 911–917, 1988. View at Scopus
  26. D. Liao, N. A. Hessler, and R. Malinow, “Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice,” Nature, vol. 375, no. 6530, pp. 400–404, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Y. Lu, H. Y. Man, W. Ju, W. S. Trimble, J. F. MacDonald, and Y. T. Wang, “Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons,” Neuron, vol. 29, no. 1, pp. 243–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Watt, P. J. Sjostrom, M. Hausser, S. B. Nelson, and G. G. Turrigiano, “A proportional but slower NMDA potentiation follows AMPA potentiation in LTP,” Nature Neuroscience, vol. 7, no. 5, pp. 518–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Watt, M. C. W. van Rossum, K. M. MacLeod, S. B. Nelson, and G. G. Turrigiano, “Activity coregulates quantal AMPA and NMDA currents at neocortical synapses,” Neuron, vol. 26, no. 3, pp. 659–670, 2000. View at Scopus
  30. T. G. Banke, D. Bowie, H. K. Lee, R. L. Huganir, A. Schousboe, and S. F. Traynelis, “Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase,” Journal of Neuroscience, vol. 20, no. 1, pp. 89–102, 2000. View at Scopus
  31. K. W. Roche, R. J. O'Brien, A. L. Mammen, J. Bernhardt, and R. L. Huganir, “Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit,” Neuron, vol. 16, no. 6, pp. 1179–1188, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. V. A. Derkach, “Silence analysis of AMPA receptor mutated at the CAM-kinase II phosphorylation site,” Biophysical Journal, vol. 84, no. 3, pp. 1701–1708, 2003. View at Scopus
  33. Y. Hayashi, S. H. Shi, J. A. Esteban, A. Piccini, J. C. Poncer, and R. Malinow, “Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction,” Science, vol. 287, no. 5461, pp. 2262–2267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. H. K. Lee, M. Barbarosie, K. Kameyama, M. F. Bear, and R. L. Huganir, “Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity,” Nature, vol. 405, no. 6789, pp. 955–959, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Derkach, A. Barria, and T. R. Soderling, “Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 3269–3274, 1999. View at Scopus
  36. I. Malagie, A. Deslandes, and A. M. Gardier, “Effects of acute and chronic tianeptine administration on serotonin outflow in rats: comparison with paroxetine by using in vivo microdialysis,” European Journal of Pharmacology, vol. 403, no. 1-2, pp. 55–65, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Pineyro, L. Deveault, C. de Montigny, and P. Blier, “Effect of prolonged administration of tianeptine on 5-HT neurotransmission: an electrophysiological study in the rat hippocampus and dorsal raphe,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 351, no. 2, pp. 119–125, 1995. View at Scopus
  38. R. Invernizzi, L. Pozzi, S. Garattini, and R. Samanin, “Tianeptine increases the extracellular concentrations of dopamine in the nucleus accumbens by a serotonin-independent mechanism,” Neuropharmacology, vol. 31, no. 3, pp. 221–227, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Sarantis, N. Matsokis, and F. Angelatou, “Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling,” Neuroscience, vol. 163, no. 4, pp. 1135–1145, 2009. View at Scopus
  40. K. Sarantis, K. Antoniou, N. Matsokis, and F. Angelatou, “Exposure to novel environment is characterized by an interaction of D1/NMDA receptors underlined by phosphorylation of the NMDA and AMPA receptor subunits and activation of ERK1/2 signaling, leading to epigenetic changes and gene expression in rat hippocampus,” Neurochemistry International, vol. 60, no. 1, pp. 55–67, 2012. View at Publisher · View at Google Scholar
  41. J. O'Keefe and J. Dostrovsky, “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat,” Brain Research, vol. 34, no. 1, pp. 171–175, 1971. View at Scopus
  42. M. A. Wilson and B. L. McNaughton, “Dynamics of the hippocampal ensemble code for space,” Science, vol. 261, no. 5124, pp. 1055–1058, 1993. View at Scopus
  43. W. Singer, “Synchronization of cortical activity and its putative role in information processing and learning,” Annual Review of Physiology, vol. 55, pp. 349–374, 1993. View at Scopus
  44. J. O'Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus, vol. 3, no. 3, pp. 317–330, 1993. View at Scopus
  45. W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes, “Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences,” Hippocampus, vol. 6, no. 2, pp. 149–172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. K. D. Harris, D. A. Henze, H. Hirase et al., “Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells,” Nature, vol. 417, no. 6890, pp. 738–741, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. R. Mehta, A. K. Lee, and M. A. Wilson, “Role of experience and oscillations in transforming a rate code into a temporal code,” Nature, vol. 417, no. 6890, pp. 741–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Hagewoud, R. Havekes, A. Novati, J. N. Keijser, E. A. van der Zee, and P. Meerlo, “Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation,” Journal of Sleep Research, vol. 19, no. 2, pp. 280–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Uslaner, S. Parmentier-Batteur, R. B. Flick et al., “Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus,” Neuropharmacology, vol. 57, no. 5-6, pp. 531–538, 2009. View at Publisher · View at Google Scholar · View at Scopus