About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 305693, 10 pages
http://dx.doi.org/10.1155/2012/305693
Review Article

Enriched and Deprived Sensory Experience Induces Structural Changes and Rewires Connectivity during the Postnatal Development of the Brain

1Laboratory of Experimental Neuroscience LaNCE, Department of Neuroscience, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Sarriena Auzoa, 48940 Leioa, Spain
2Unit of Anatomy, Department of Medicine, University of Fribourg, Rue Albert Gockel 1, 1700 Fribourg, Switzerland

Received 16 December 2011; Revised 20 March 2012; Accepted 13 June 2012

Academic Editor: Pietro Pietrini

Copyright © 2012 Harkaitz Bengoetxea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. T. Greenough, J. E. Black, and C. S. Wallace, “Experience and brain development,” Child Development, vol. 58, no. 3, pp. 539–559, 1987. View at Scopus
  2. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. T. K. Hensch, “Critical period regulation,” Annual Review of Neuroscience, vol. 27, pp. 549–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. A. Jones and S. C. Jefferson, “Reflections of experience-expectant development in repair of the adult damaged brain,” Developmental Psychobiology, vol. 53, no. 5, pp. 466–475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. G. Argandoña and J. V. Lafuente, “Effects of dark-rearing on the vascularization of the developmental rat visual cortex,” Brain Research, vol. 732, no. 1-2, pp. 43–51, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Briner, M. de Roo, A. Dayer, D. Muller, J. Z. Kiss, and L. Vutskits, “Bilateral whisker trimming during early postnatal life impairs dendritic spine development in the mouse somatosensory barrel cortex,” Journal of Comparative Neurology, vol. 518, no. 10, pp. 1711–1723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kral and J. J. Eggermont, “What's to lose and what's to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity,” Brain Research Reviews, vol. 56, no. 1, pp. 259–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Fox and R. O. L. Wong, “A comparison of experience-dependent plasticity in the visual and somatosensory systems,” Neuron, vol. 48, no. 3, pp. 465–477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Butz, F. Wörgötter, and A. van Ooyen, “Activity-dependent structural plasticity,” Brain Research Reviews, vol. 60, no. 2, pp. 287–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Pouille, A. Marin-Burgin, H. Adesnik, B. V. Atallah, and M. Scanziani, “Input normalization by global feedforward inhibition expands cortical dynamic range,” Nature Neuroscience, vol. 12, no. 12, pp. 1577–1585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. R. House, J. Elstrott, E. Koh, J. Chung, and D. E. Feldman, “Parallel regulation of feedforward inhibition and excitation during whisker map plasticity,” Neuron, vol. 72, no. 5, pp. 819–831, 2011. View at Publisher · View at Google Scholar
  12. M. A. Meredith and S. G. Lomber, “Somatosensory and visual crossmodal plasticity in the anterior auditory field of early-deaf cats,” Hearing Research, vol. 280, no. 1-2, pp. 38–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ptito and S. Desgent, “Sensory input-based adaptation and brain architecture,” in Lifespan Development and the Brain, P. Baltes, P. Reuter-Lorenz, and F. Rösler, Eds., pp. 111–123, Cambridge University Press, Cambridge, UK, 2006.
  14. M. Fu and Y. Zuo, “Experience-dependent structural plasticity in the cortex,” Trends in Neurosciences, vol. 34, no. 4, pp. 177–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Sirevaag, J. E. Black, D. Shafron, and W. T. Greenough, “Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats,” Brain Research, vol. 471, no. 2, pp. 299–304, 1988. View at Scopus
  16. C. D. Gilbert, “Adult cortical dynamics,” Physiological Reviews, vol. 78, no. 2, pp. 467–485, 1998. View at Scopus
  17. H. Yao and Y. Dan, “Synaptic learning rules, cortical circuits, and visual function,” Neuroscientist, vol. 11, no. 3, pp. 206–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. E. Black, A. M. Sirevaag, and W. T. Greenough, “Complex experience promotes capillary formation in young rat visual cortex,” Neuroscience Letters, vol. 83, no. 3, pp. 351–355, 1987. View at Scopus
  19. R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex,” Cerebral Cortex, vol. 12, no. 3, pp. 225–233, 2002. View at Scopus
  20. E. G. Argandoña, M. L. Rossi, and J. V. Lafuente, “Visual deprivation effects on the s100β positive astrocytic population in the developing rat visual cortex: a quantitative study,” Developmental Brain Research, vol. 141, no. 1-2, pp. 63–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. B. Tieman, S. Möllers, D. G. Tieman, and J. White, “The blood supply of the cat's visual cortex and its postnatal development,” Brain Research, vol. 998, no. 1, pp. 100–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. W. Bakkum, L. A. Benevento, and R. S. Cohen, “Effects of light/dark- and dark-rearing on synaptic morphology in the superior colliculus and visual cortex of the postnatal and adult rat,” Journal of Neuroscience Research, vol. 28, no. 1, pp. 65–80, 1991. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Cancedda, E. Putignano, A. Sale, A. Viegi, N. Berardi, and L. Maffei, “Acceleration of visual system development by environmental enrichment,” Journal of Neuroscience, vol. 24, no. 20, pp. 4840–4848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Berardi, T. Pizzorusso, and L. Maffei, “Extracellular matrix and visual cortical plasticity: freeing the synapse,” Neuron, vol. 44, no. 6, pp. 905–908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Berardi, T. Pizzorusso, and L. Maffei, “Critical periods during sensory development,” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 138–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett, and L. Maffei, “Reactivation of ocular dominance plasticity in the adult visual cortex,” Science, vol. 298, no. 5596, pp. 1248–1251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Nowicka, S. Soulsby, J. Skangiel-Kramska, and S. Glazewski, “Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex,” European Journal of Neuroscience, vol. 30, no. 11, pp. 2053–2063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. W. McGee, Y. Yang, Q. S. Fischer, N. W. Daw, and S. H. Strittmatter, “Neuroscience: experience-driven plasticity of visual cortex limited by myelin and nogo receptor,” Science, vol. 309, no. 5744, pp. 2222–2226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. K. Hensch, “Critical period mechanisms in developing visual cortex,” Current Topics in Developmental Biology, vol. 69, pp. 215–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei, “Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation,” Vision Research, vol. 34, no. 6, pp. 709–720, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Sale, J. F. M. Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Y. He, W. Hodos, and E. M. Quinlan, “Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex,” Journal of Neuroscience, vol. 26, no. 11, pp. 2951–2955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. B. Hofer, T. D. Mrsic-Flogel, T. Bonhoeffer, and M. Hübener, “Prior experience enhances plasticity in adult visual cortex,” Nature Neuroscience, vol. 9, no. 1, pp. 127–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Putignano, G. Lonetti, L. Cancedda et al., “Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity,” Neuron, vol. 53, no. 5, pp. 747–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. F. M. Vetencourt, A. Sale, A. Viegi et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Lehmann and S. Löwel, “Age-dependent ocular dominance plasticity in adult mice,” PLoS ONE, vol. 3, no. 9, Article ID e3120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Fifková, “The effect of unilateral deprivation on visual centers in rats,” Journal of Comparative Neurology, vol. 140, no. 4, pp. 431–438, 1970. View at Scopus
  38. B. G. Cragg, “Changes in visual cortex on first exposure of rats to light: effect on synaptic dimensions,” Nature, vol. 215, no. 5098, pp. 251–253, 1967. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Bengoetxea, E. G. Argandoña, and J. V. Lafuente, “Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex,” Cerebral Cortex, vol. 18, no. 7, pp. 1630–1639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. G. Argandoña, H. Bengoetxea, and J. V. Lafuente, “Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100β astrocytic density in the rat visual cortex,” Journal of Anatomy, vol. 215, no. 2, pp. 132–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. D. Mower, D. Berry, J. L. Burchfiel, and F. H. Duffy, “Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex,” Brain Research, vol. 220, no. 2, pp. 255–267, 1981. View at Publisher · View at Google Scholar · View at Scopus
  42. M. T. Sato, A. Tokunaga, Y. Kawai, Y. Shimomura, Y. Tano, and E. Senba, “The effects of binocular suture and dark rearing on the induction of c- fos protein in the rat visual cortex during and after the critical period,” Neuroscience Research, vol. 36, no. 3, pp. 227–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. K. S. Bedi, “The combined effects of unilateral enucleation and rearing in a “dim” red light on synapse-to-neuron ratios in the rat visual cortex,” Journal of Anatomy, vol. 167, pp. 71–84, 1989. View at Scopus
  44. B. K. Bracken and G. G. Tyrrigiano, “Experience-dependent regulation of TrkB isoforms in rodent visual cortex,” Developmental Neurobiology, vol. 69, no. 5, pp. 267–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Corvetti, E. Aztiria, and L. Domenici, “Reduction of GFAP induced by long dark rearing is not restricted to visual cortex,” Brain Research, vol. 1067, no. 1, pp. 146–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Müller, “Dark-rearing retards the maturation of astrocytes in restricted layers of cat visual cortex,” Glia, vol. 3, no. 6, pp. 487–494, 1990. View at Scopus
  47. E. G. Argandoña, H. Bengoetxea, and J. V. Lafuente, “Lack of experience-mediated differences in the immunohistochemical expression of blood-brain barrier markers (EBA and GluT-1) during the postnatal development of the rat visual cortex,” Developmental Brain Research, vol. 156, no. 2, pp. 158–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. E. G. Argandoña and J. V. Lafuente, “Influence of visual experience deprivation on the postnatal development of the microvascular bed in layer IV of the rat visual cortex,” Brain Research, vol. 855, no. 1, pp. 137–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Fox, “Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex,” Neuroscience, vol. 111, no. 4, pp. 799–814, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. C. S. Wu, C. J. Ballester Rosado, and H. C. Lu, “What can we get from “barrels”: the rodent barrel cortex as a model for studying the establishment of neural circuits,” European Journal of Neuroscience, vol. 34, no. 10, pp. 1663–1676, 2011. View at Publisher · View at Google Scholar
  51. T. A. Woolsey and H. van der Loos, “The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units,” Brain Research, vol. 17, no. 2, pp. 205–242, 1970. View at Scopus
  52. M. Brecht, “Barrel cortex and whisker-mediated behaviors,” Current Opinion in Neurobiology, vol. 17, no. 4, pp. 408–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Li, U. Rudolph, and M. M. Huntsman, “Long-term sensory deprivation selectively rearranges functional inhibitory circuits in mouse barrel cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12156–12161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. C. H. Liu, A. J. Heynen, M. G. H. Shuler, and M. F. Bear, “Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex,” Neuron, vol. 58, no. 3, pp. 340–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. W. Tao and M. M. Poo, “Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields,” Neuron, vol. 45, no. 6, pp. 829–836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Shoykhet, P. W. Land, and D. J. Simons, “Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons,” Journal of Neurophysiology, vol. 94, no. 6, pp. 3987–3995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Foeller, T. Celikel, and D. E. Feldman, “Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex,” Journal of Neurophysiology, vol. 94, no. 6, pp. 4387–4400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. H. Lee, P. W. Land, and D. J. Simons, “Layer- and cell-type-specific effects of neonatal whisker-trimming in adult rat barrel cortex,” Journal of Neurophysiology, vol. 97, no. 6, pp. 4380–4385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Ghoshal, A. Tomarken, and F. Ebner, “Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience,” Journal of Neuroscience, vol. 31, no. 7, pp. 2526–2536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. S. B. Cox, T. A. Woolsey, and C. M. Rovainen, “Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels,” Journal of Cerebral Blood Flow and Metabolism, vol. 13, no. 6, pp. 899–913, 1993. View at Scopus
  61. B. de Celis Alonso, A. S. Lowe, J. P. Dear, K. C. Lee, S. C. R. Williams, and G. T. Finnerty, “Sensory inputs from whisking movements modify cortical whisker maps visualized with functional magnetic resonance imaging,” Cerebral Cortex, vol. 18, no. 6, pp. 1314–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Li, D. S. Bravo, A. Louise Upton et al., “Close temporal coupling of neuronal activity and tissue oxygen responses in rodent whisker barrel cortex,” European Journal of Neuroscience, vol. 34, no. 12, pp. 1983–1996, 2011. View at Publisher · View at Google Scholar
  63. V. R. Whitaker, L. Cui, S. Miller, S. P. Yu, and L. Wei, “Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 1, pp. 57–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. J. Angely and D. M. Coppola, “How does long-term odor deprivation affect the olfactory capacity of adult mice?” Behavioral and Brain Functions, vol. 25, no. 6, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Roux, K. Benchenane, J. D. Rothstein, G. Bonvento, and C. Giaume, “Plasticity of astroglial networks in olfactory glomeruli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18442–18446, 2011. View at Publisher · View at Google Scholar
  66. J. B. Lamarck, Recherches sur l'Organisation des Corps Vivants, 1808.
  67. C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Racesin the Struggle for Life, J. Murray, London, UK, 1859.
  68. S. R. Cajal, Les Nouvelles Idées sur la Structure du Système Nerveux: Chez l'Homme et Chez les Vertebras, 1894.
  69. M. S. C. S. Foster, A Textbook of Physiology, Part Three: The Central Nervous System, MacMillan & Co., London, UK, 1897.
  70. J. A. Markham and W. T. Greenough, “Experience-driven brain plasticity: beyond the synapse,” Neuron Glia Biology, vol. 1, no. 4, pp. 351–363, 2004.
  71. D. O. Hebb, “The effects of early experience on problem solving at maturity,” American Psychologist, vol. 2, pp. 306–307, 1947.
  72. H. van Praag, G. Kempermann, and F. H. Gage, “Neural Consequences of environmental enrichment,” Nature Reviews Neuroscience, vol. 1, no. 3, pp. 191–198, 2000. View at Scopus
  73. B. Will, R. Galani, C. Kelche, and M. R. Rosenzweig, “Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002),” Progress in Neurobiology, vol. 72, no. 3, pp. 167–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. C. Diamond, D. Krech, and M. R. Rosenzweig, “The effects of an enriched environment on the histology of the rat cerebral cortex,” The Journal of Comparative Neurology, vol. 123, pp. 111–120, 1964. View at Scopus
  75. M. C. Diamond, F. Law, H. Rhodes et al., “Increases in cortical depth and glia numbers in rats subjected to enriched environment,” Journal of Comparative Neurology, vol. 128, no. 1, pp. 117–126, 1966. View at Scopus
  76. F. R. Volkmar and W. T. Greenough, “Rearing complexity affects branching of dendrites in the visual cortex of the rat,” Science, vol. 176, no. 4042, pp. 1445–1447, 1972. View at Scopus
  77. W. T. Greenough, F. R. Volkmar, and J. M. Juraska, “Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat,” Experimental Neurology, vol. 41, no. 2, pp. 371–378, 1973. View at Scopus
  78. J. O. Coq and C. Xerri, “Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats,” Experimental Brain Research, vol. 121, no. 2, pp. 191–204, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Rampon, C. H. Jiang, H. Dong et al., “Effects of environmental enrichment on gene expression in the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 23, pp. 12880–12884, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Nikolaev, L. Kaczmarek, S. W. Zhu, B. Winblad, and A. H. Mohammed, “Environmental manipulation differentially alters c-Fos expression in amygdaloid nuclei following aversive conditioning,” Brain Research, vol. 957, no. 1, pp. 91–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. T. A. Comery, R. Shah, and W. T. Greenough, “Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for association of morphological plasticity with early response gene expression,” Neurobiology of Learning and Memory, vol. 63, no. 3, pp. 217–219, 1995. View at Publisher · View at Google Scholar · View at Scopus
  82. T. A. Comery, C. X. Stamoudis, S. A. Irwin, and W. T. Greenough, “Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment,” Neurobiology of Learning and Memory, vol. 66, no. 2, pp. 93–96, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. W. T. Greenough, J. W. McDonald, R. M. Parnisari, and J. E. Camel, “Environmental conditions modulate degeneration and new dendrite growth in cerebellum of senescent rats,” Brain Research, vol. 380, no. 1, pp. 136–143, 1986. View at Scopus
  84. E. L. Bennett, M. R. Rosenzweig, and M. C. Diamond, “Rat brain: effects of environmental enrichment on wet and dry weights,” Science, vol. 163, no. 3869, pp. 825–826, 1969. View at Scopus
  85. M. C. Diamond, C. A. Ingham, and R. E. Johnson, “Effects of environment on morphology of rat cerebral cortex and hippocampus,” Journal of Neurobiology, vol. 7, no. 1, pp. 75–85, 1976. View at Scopus
  86. C. J. Faherty, D. Kerley, and R. J. Smeyne, “A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment,” Developmental Brain Research, vol. 141, no. 1-2, pp. 55–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. M. G. Leggio, L. Mandolesi, F. Federico et al., “Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat,” Behavioural Brain Research, vol. 163, no. 1, pp. 78–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. J. During and L. Cao, “VEGF, a mediator of the effect of experience on hippocampal neurogenesis,” Current Alzheimer Research, vol. 3, no. 1, pp. 29–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Young, P. A. Lawlor, P. Leone, M. Dragunow, and M. J. During, “Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective,” Nature Medicine, vol. 5, no. 4, pp. 448–453, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Sale, E. Putignano, L. Cancedda et al., “Enriched environment and acceleration of visual system development,” Neuropharmacology, vol. 47, no. 5, pp. 649–660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Szeligo and C. P. Leblond, “Response of the 3 main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and improverished environments following weaning,” Journal of Comparative Neurology, vol. 172, no. 2, pp. 247–263, 1977. View at Scopus
  92. A. M. Sirevaag and W. T. Greenough, “Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries,” Brain Research, vol. 424, no. 2, pp. 320–332, 1987. View at Scopus
  93. A. M. Sirevaag and W. T. Greenough, “Plasticity of GFAP-immunoreactive astrocyte size and number in visual cortex of rats reared in complex environments,” Brain Research, vol. 540, no. 1-2, pp. 273–278, 1991. View at Scopus
  94. J. E. Black, A. M. Zelazny, and W. T. Greenough, “Capillary and mitochondrial support of neural plasticity in adult rat visual cortex,” Experimental Neurology, vol. 111, no. 2, pp. 204–209, 1991. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Zacchigna, D. Lambrechts, and P. Carmeliet, “Neurovascular signalling defects in neurodegeneration,” Nature Reviews Neuroscience, vol. 9, no. 3, pp. 169–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. T. M. Pham, B. Winblad, A. C. Granholm, and A. H. Mohammed, “Environmental influences on brain neurotrophins in rats,” Pharmacology Biochemistry and Behavior, vol. 73, no. 1, pp. 167–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. T. B. Franklin, J. A. Murphy, T. L. Myers, D. B. Clarke, and R. W. Currie, “Enriched environment during adolescence changes brain-derived neurotrophic factor and TrkB levels in the rat visual system but does not offer neuroprotection to retinal ganglion cells following axotomy,” Brain Research, vol. 1095, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. B. R. Ickes, T. M. Pham, L. A. Sanders, D. S. Albeck, A. H. Mohammed, and A. C. Granholm, “Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain,” Experimental Neurology, vol. 164, no. 1, pp. 45–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. F. Naka, N. Narita, N. Okado, and M. Narita, “Modification of AMPA receptor properties following environmental enrichment,” Brain and Development, vol. 27, no. 4, pp. 275–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. P. K. Dash, S. A. Orsi, and A. N. Moore, “Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury,” Neuroscience, vol. 163, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. J. C. Bennett, P. A. McRae, L. J. Levy, and K. M. Frick, “Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice,” Neurobiology of Learning and Memory, vol. 85, no. 2, pp. 139–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Segovia, A. del Arco, and F. Mora, “Environmental enrichment, prefrontal cortex, stress, and aging of the brain,” Journal of Neural Transmission, vol. 116, no. 8, pp. 1007–1016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Benaroya-Milshtein, N. Hollander, A. Apter et al., “Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity,” European Journal of Neuroscience, vol. 20, no. 5, pp. 1341–1347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Bartoletti, P. Medini, N. Berardi, and L. Maffei, “Environmental enrichment prevents effects of dark-rearing in the rat visual cortex,” Nature Neuroscience, vol. 7, no. 3, pp. 215–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. O. B. Amaral, R. S. Vargas, G. Hansel, I. Izquierdo, and D. O. Souza, “Duration of environmental enrichment influences the magnitude and persistence of its behavioral effects on mice,” Physiology & Behavior, vol. 93, no. 1-2, pp. 388–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Nithianantharajah, C. Barkus, M. Murphy, and A. J. Hannan, “Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice,” Neurobiology of Disease, vol. 29, no. 3, pp. 490–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. C. J. Faherty, K. R. Shepherd, A. Herasimtschuk, and R. J. Smeyne, “Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism,” Molecular Brain Research, vol. 134, no. 1, pp. 170–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. C. E. McOmish, E. Burrows, M. Howard et al., “Phospholipase C-β1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration,” Molecular Psychiatry, vol. 13, no. 7, pp. 661–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. J. P. Rauschecker, “Compensatory plasticity and sensory substitution in the cerebral cortex,” Trends in Neurosciences, vol. 18, no. 1, pp. 36–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. L. B. Merabet and A. Pascual-Leone, “Neural reorganization following sensory loss: the opportunity of change,” Nature Reviews Neuroscience, vol. 11, no. 1, pp. 44–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. D. E. Feldman and M. Brecht, “Map plasticity in somatosensory cortex,” Science, vol. 310, no. 5749, pp. 810–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Voss and R. J. Zatorre, “Organization and reorganization of sensory-deprived cortex,” Current Biology, vol. 22, no. 5, pp. R168–R173, 2012.
  113. G. Bronchti, P. Heil, R. Sadka, A. Hess, H. Scheich, and Z. Wollberg, “Auditory activation of “visual” cortical areas in the blind mole rat (Spalax ehrenbergi),” European Journal of Neuroscience, vol. 16, no. 2, pp. 311–329, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. E. G. Argandoña, R. Ledezma, H. Bengoetxea et al., “Physical exercise increases acute adaptive angiogenic response to moderate altitude,” in Proceedings of the 8th International Brain Research Organization World Congress of Neuroscience, vol. 2, p. 992, F1000 Posters, July 2011.
  115. T. Cotrufo, A. Viegi, N. Berardi, Y. Bozzi, L. Mascia, and L. Maffei, “Effects of neurotrophins on synaptic protein expression in the visual cortex of dark-reared rats,” Journal of Neuroscience, vol. 23, no. 9, pp. 3566–3571, 2003. View at Scopus
  116. W. C. Lee, H. Huang, G. Feng et al., “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS biology, vol. 4, no. 2, Article ID e29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. Jiao, Z. Zhang, C. Zhang et al., “A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12131–12136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. J. M. Miller, C. G. Le Prell, D. M. Prieskorn, N. L. Wys, and R. A. Altschuler, “Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor,” Journal of Neuroscience Research, vol. 85, no. 9, pp. 1959–1969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. C. C. Chan, A. W. Wong, K. H. Ting, S. Whitfield-Gabrieli, J. He, and T. M. Lee, “Cross auditory-spatial learning in early-blind individuals,” Human Brain Mapping. In press. View at Publisher · View at Google Scholar
  120. L. B. Lewis, M. Saenz, and I. Fine, “Mechanisms of cross-modal plasticity in early-blind subjects,” Journal of Neurophysiology, vol. 104, no. 6, pp. 2995–3008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. O. Collignon, F. Champoux, P. Voss, and F. Lepore, “Sensory rehabilitation in the plastic brain,” Progress in Brain Research, vol. 191, pp. 211–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. R. Hamilton, J. P. Keenan, M. Catala, and A. Pascual-Leone, “Alexia for Braille following bilateral occipital stroke in an early blind woman,” NeuroReport, vol. 11, no. 2, pp. 237–240, 2000. View at Scopus
  123. E. M. Finney, I. Fine, and K. R. Dobkins, “Visual stimuli activate auditory cortex in the deaf,” Nature Neuroscience, vol. 4, no. 12, pp. 1171–1173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Sharma, “Special issue on central auditory system development and plasticity,” International Journal of Audiology, vol. 46, no. 9, p. 459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Piché, S. Robert, D. Miceli, and G. Bronchti, “Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3463–3472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. S. J. Karlen and L. Krubitzer, “Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain,” Cerebral Cortex, vol. 19, no. 6, pp. 1360–1371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. A. M. Robbins, D. B. Koch, M. J. Osberger, S. Zimmerman-Phillips, and L. Kishon-Rabin, “Effect of age at cochlear implantation on auditory skill development in infants and toddlers,” Archives of Otolaryngology—Head & Neck Surgery, vol. 130, no. 5, pp. 570–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Kral and A. Sharma, “Developmental neuroplasticity after cochlear implantation,” Trends in Neurosciences, vol. 35, no. 2, pp. 111–122, 2011. View at Publisher · View at Google Scholar
  129. A. Guzzetta, S. Baldini, A. Bancale et al., “Massage accelerates brain development and the maturation of visual function,” Journal of Neuroscience, vol. 29, no. 18, pp. 6042–6051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. T. Mao, T. M. Hua, and S. L. Pallas, “Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas,” Journal of Neurophysiology, vol. 105, no. 4, pp. 1558–1573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. T. Ortiz, J. Poch, J. M. Santos et al., “Recruitment of occipital cortex during sensory substitution training linked to subjective experience of seeing in people with blindness,” PLoS One, vol. 6, no. 8, Article ID e23264, 2011.
  132. M. Ptito, S. M. Moesgaard, A. Gjedde, and R. Kupers, “Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind,” Brain, vol. 128, no. 3, pp. 606–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. J. D. Weiland, A. K. Cho, and M. S. Humayun, “Retinal prostheses: current clinical results and future needs,” Ophthalmology, vol. 118, no. 11, pp. 2227–2237, 2011. View at Publisher · View at Google Scholar
  134. E. Striem-Amit, U. Hertz, and A. Amedi, “Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI,” PLoS ONE, vol. 6, no. 3, Article ID e17832, 2011. View at Publisher · View at Google Scholar · View at Scopus