About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 352829, 7 pages
http://dx.doi.org/10.1155/2012/352829
Research Article

SCRAPPER Regulates the Thresholds of Long-Term Potentiation/Depression, the Bidirectional Synaptic Plasticity in Hippocampal CA3-CA1 Synapses

1Cellular & Molecular Synaptic Function Unit, Initial Research Project, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1, Tancha, Onna 904-0495, Japan
2Molecular Gerontology Research Group, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida 194-8511, Japan
3Department of Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
4Department of Medical Chemistry, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi 570-8506, Japan
5Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku 102-0076, Japan

Received 10 September 2012; Accepted 31 October 2012

Academic Editor: Michael Stewart

Copyright © 2012 Hiroshi Takagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Yao, H. Takagi, H. Ageta et al., “SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release,” Cell, vol. 130, no. 5, pp. 943–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Bito, K. Deisseroth, and R. W. Tsien, “CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression,” Cell, vol. 87, no. 7, pp. 1203–1214, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. K. S. Kosik, “The neuronal microRNA system,” Nature Reviews Neuroscience, vol. 7, no. 12, pp. 911–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Matsumoto, M. Setou, and K. Inokuchi, “Transcriptome analysis reveals the population of dendritic RNAs and their redistribution by neural activity,” Neuroscience Research, vol. 57, no. 3, pp. 411–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Setou, T. Nakagawa, D. H. Seog, and N. Hirokawa, “Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor- containing vesicle transport,” Science, vol. 288, no. 5472, pp. 1796–1802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Setou, D. H. Seog, Y. Tanaka et al., “Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites,” Nature, vol. 417, no. 6884, pp. 83–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Scopus
  8. B. Gustafsson, H. Wigstrom, W. C. Abraham, and Y. Y. Huang, “Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials,” Journal of Neuroscience, vol. 7, no. 3, pp. 774–780, 1987. View at Scopus
  9. S. M. Dudek and M. F. Bear, “Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4363–4367, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. W. B. Levy and O. Steward, “Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus,” Neuroscience, vol. 8, no. 4, pp. 791–797, 1983. View at Publisher · View at Google Scholar · View at Scopus
  11. P. K. Stanton and T. J. Sejnowski, “Associative long-term depression in the hippocampus induced by hebbian covariance,” Nature, vol. 339, no. 6221, pp. 215–218, 1989. View at Scopus
  12. A. Ngezahayo, M. Schachner, and A. Artola, “Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus,” Journal of Neuroscience, vol. 20, no. 7, pp. 2451–2458, 2000. View at Scopus
  13. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. M. F. Bear and R. C. Malenka, “Synaptic plasticity: LTP and LTD,” Current Opinion in Neurobiology, vol. 4, no. 3, pp. 389–399, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Malenka and R. A. Nicoll, “Long-term potentiation—a decade of progress?” Science, vol. 285, no. 5435, pp. 1870–1874, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. G. L. Collingridge, C. E. Herron, and R. A. J. Lester, “Frequency-dependent N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus,” Journal of Physiology, vol. 399, pp. 301–312, 1988. View at Scopus
  17. G. L. Collingridge, C. E. Herron, and R. A. J. Lester, “Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus,” Journal of Physiology, vol. 399, pp. 283–300, 1988. View at Scopus
  18. A. Artola and W. Singer, “Long-term potentiation and NMDA receptors in rat visual cortex,” Nature, vol. 330, no. 6149, pp. 649–652, 1987. View at Scopus
  19. R. M. Mulkey and R. C. Malenka, “Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus,” Neuron, vol. 9, no. 5, pp. 967–975, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Heynen, W. C. Abraham, and M. F. Bear, “Bidirectional modification of CA1 synapses in the adult hippocampus in vivo,” Nature, vol. 381, no. 6578, pp. 163–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Whitlock, A. J. Heynen, M. G. Shuler, and M. F. Bear, “Learning induces long-term potentiation in the hippocampus,” Science, vol. 313, no. 5790, pp. 1093–1097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. D. Burrell and Q. Li, “Co-induction of long-term potentiation and long-term depression at a central synapse in the leech,” Neurobiology of Learning and Memory, vol. 90, no. 1, pp. 275–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. D. Philpot, M. P. Weisberg, M. S. Ramos et al., “Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex,” Neuropharmacology, vol. 41, no. 6, pp. 762–770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. C. F. Zorumski and Y. Izumi, “NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders,” Neuroscience and Biobehavioral Reviews, vol. 36, no. 3, pp. 989–1000, 2012.
  26. J. Zhang, Y. Yang, H. Li, J. Cao, and L. Xu, “Amplitude/frequency of spontaneous mEPSC correlates to the degree of long-term depression in the CA1 region of the hippocampal slice,” Brain Research, vol. 1050, no. 1-2, pp. 110–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Ageta, A. Kato, S. Hatakeyama, K. I. Nakayama, Y. Isojima, and H. Sugiyama, “Regulation of the level of vesl-1S/homer-1a proteins by ubiquitin-proteasome proteolytic systems,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 15893–15897, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. D. Ehlers, “Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system,” Nature Neuroscience, vol. 6, no. 3, pp. 231–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Fonseca, R. M. Vabulas, F. U. Hartl, T. Bonhoeffer, and U. V. Nägerl, “A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP,” Neuron, vol. 52, no. 2, pp. 239–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Bingol and M. Sheng, “Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease,” Neuron, vol. 69, no. 1, pp. 22–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Chen, P. Yuanxiang, T. Knopfel, U. Thomas, and T. Behnisch, “Hippocampal LTP triggers proteasome-mediated SPAR degradation in CA1 neurons,” Synapse, vol. 66, no. 2, pp. 142–150, 2012.
  32. F. Dobie and A. M. Craig, “A fight for neurotransmission: SCRAPPER Trashes RIM,” Cell, vol. 130, no. 5, pp. 775–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. S. Kaeser, H. B. Kwon, C. Q. Chiu, L. Deng, P. E. Castillo, and T. C. Südhof, “RIM1α and RIM1β are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions,” Journal of Neuroscience, vol. 28, no. 50, pp. 13435–13447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Han, P. S. Kaeser, T. C. Südhof, and R. Schneggenburger, “RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone,” Neuron, vol. 69, no. 2, pp. 304–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Yao, Y. Sugiura, M. Matsumoto, and M. Setou, “In situ proteomics with imaging mass spectrometry and principal component analysis in the Scrapper-knockout mouse brain,” Proteomics, vol. 8, no. 18, pp. 3692–3701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Yao, K. Takao, T. Miyakawa, S. Ito, and M. Setou, “Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice,” PLoS ONE, vol. 6, no. 2, Article ID e17317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ikegami, R. L. Heier, M. Taruishi et al., “Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3213–3218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Benito, L. M. Valor, M. Jimenez-Minchan, W. Huber, and A. Barco, “cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression,” The Journal of Neuroscience, vol. 31, no. 50, pp. 18237–18250, 2012.
  39. E. Inoue, S. Mochida, H. Takagi et al., “SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release,” Neuron, vol. 50, no. 2, pp. 261–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Hagiwara, K. Harada, Y. Hida, I. Kitajima, and T. Ohtsuka, “Distribution of serine/threonine kinase SAD-B in mouse peripheral nerve synapse,” NeuroReport, vol. 22, no. 7, pp. 319–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Kishi, Y. A. Pan, J. G. Crump, and J. R. Sanes, “Mammalian SAD kinases are required for neuronal polarization,” Science, vol. 307, no. 5711, pp. 929–932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. P. Barnes, B. N. Lilley, Y. A. Pan et al., “LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons,” Cell, vol. 129, no. 3, pp. 549–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Shelly and M. M. Poo, “Role of LKB1-SAD/MARK pathway in neuronal polarization,” Developmental Neurobiology, vol. 71, no. 6, pp. 508–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Tada, H. J. Okano, H. Takagi et al., “Fbxo45, a novel ubiquitin ligase, regulates synaptic activity,” Journal of Biological Chemistry, vol. 285, no. 6, pp. 3840–3849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Sugiura, N. Zaima, M. Setou, S. Ito, and I. Yao, “Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 403, no. 7, pp. 1851–1861, 2012.
  46. Y. Sugiura and M. Setou, “Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes,” Journal of Neuroimmune Pharmacology, vol. 5, no. 1, pp. 31–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Sugiura, R. Taguchi, and M. Setou, “Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure,” PLoS ONE, vol. 6, no. 3, Article ID e17952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Setou and N. Kurabe, “Mass microscopy: high-resolution imaging mass spectrometry,” Journal of Electron Microscopy, vol. 60, no. 1, pp. 47–56, 2011. View at Publisher · View at Google Scholar · View at Scopus