About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 425818, 6 pages
http://dx.doi.org/10.1155/2012/425818
Research Article

Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

Laboratorio di Morfologia delle Reti Neuronali, Dipartimento di Medicina Pubblica Clinica e Preventiva, Seconda Università di Napoli, 80100 Napoli, Italy

Received 25 July 2012; Accepted 2 September 2012

Academic Editor: Eduard Korkotian

Copyright © 2012 Giovanni Cirillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Holtmaat, T. Bonhoeffer, D. K. Chow et al., “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nature Protocols, vol. 4, no. 8, pp. 1128–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Hirase, L. Qian, P. Barthó, and G. Buzsáki, “Calcium dynamics of cortical astrocytic networks in vivo,” PLoS Biology, vol. 2, no. 4, article e96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnology, vol. 21, no. 11, pp. 1369–1377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Helmchen and J. Waters, “Ca2+ imaging in the mammalian brain in vivo,” European Journal of Pharmacology, vol. 447, no. 2-3, pp. 119–129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Mittmann, D. J. Wallace, U. Czubayko et al., “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nature Neuroscience, vol. 14, no. 8, pp. 1089–1093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wang, N. Lou, Q. Xu et al., “Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo,” Nature Neuroscience, vol. 9, no. 6, pp. 816–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Nimmerjahn, F. Kirchhoff, J. N. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat Methods, vol. 1, no. 1, pp. 31–37, 2004. View at Scopus
  8. J. T. Trachtenberg, B. E. Chen, G. W. Knott et al., “Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex,” Nature, vol. 420, no. 6917, pp. 788–794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature, vol. 385, no. 6612, pp. 161–165, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Cirillo, N. Maggio, M. R. Bianco, C. Vollono, S. Sellitti, and M. Papa, “Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats,” Neurochemistry International, vol. 56, no. 1, pp. 152–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Cirillo, C. Cavaliere, M. R. Bianco et al., “Intrathecal NGF administration reduces reactive astrocytosis and changes neurotrophin receptors expression pattern in a rat model of neuropathic pain,” Cellular and Molecular Neurobiology, vol. 30, no. 1, pp. 51–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Colangelo, M. R. Bianco, L. Vitagliano et al., “A new nerve growth factor-mimetic peptide active on neuropathic pain in rats,” Journal of Neuroscience, vol. 28, no. 11, pp. 2698–2709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Fellin and G. Carmignoto, “Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit,” Journal of Physiology, vol. 559, no. 1, pp. 3–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Nedergaard, B. Ransom, and S. A. Goldman, “New roles for astrocytes: redefining the functional architecture of the brain,” Trends in Neurosciences, vol. 26, no. 10, pp. 523–530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. Fields and B. Stevens-Graham, “Neuroscience: new insights into neuron-glia communication,” Science, vol. 298, no. 5593, pp. 556–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. G. Haydon, “Glia: listening and talking to the synapse,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 185–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: the revolution continues,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 626–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. I. R. Winship, N. Plaa, and T. H. Murphy, “Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo,” Journal of Neuroscience, vol. 27, no. 23, pp. 6268–6272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. Charles, J. E. Merrill, E. R. Dirksen, and M. J. Sanderson, “Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate,” Neuron, vol. 6, no. 6, pp. 983–992, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7319–7324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Lendvai, E. A. Stern, B. Chen, and K. Svoboda, “Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo,” Nature, vol. 404, no. 6780, pp. 876–881, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. V. Kim, N. Jiang, C. E. Tadokoro et al., “Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites,” Journal of Immunological Methods, vol. 352, no. 1-2, pp. 89–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Davalos, J. K. Lee, W. B. Smith et al., “Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy,” Journal of Neuroscience Methods, vol. 169, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Zheng, C. Ho, S. Li, H. Keirstead, O. Steward, and M. Tessier-Lavigne, “Lack of enhanced spinal regeneration in Nogo-deficient mice,” Neuron, vol. 38, no. 2, pp. 213–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. B. G. Sanganahalli, P. Herman, H. Blumenfeld, and F. Hyder, “Oxidative neuroenergetics in event-related paradigms,” Journal of Neuroscience, vol. 29, no. 6, pp. 1707–1718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. V. Kuchibhotla, C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai, “Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice,” Science, vol. 323, no. 5918, pp. 1211–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Colangelo, G. Cirillo, M. L. Lavitrano, L. Alberghina, and M. Papa, “Targeting reactive astrogliosis by novel biotechnological strategies,” Biotechnology Advances, vol. 30, no. 1, pp. 261–271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Giovannoni, N. Maggio, M. R. Bianco et al., “Reactive astrocytosis and glial glutamate transporter clustering are early changes in a spinocerebellar ataxia type 1 transgenic mouse model,” Neuron Glia Biology, vol. 3, no. 4, pp. 335–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Cirillo, A. M. Colangelo, M. R. Bianco et al., “BB14, a nerve growth factor (NGF)-like peptide shown to be effective in reducing reactive astrogliosis and restoring synaptic homeostasis in a rat model of peripheral nerve injury,” Biotechnology Advances, vol. 30, no. 1, pp. 223–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Cavaliere, G. Cirillo, M. R. Bianco et al., “Gliosis alters expression and uptake of spinal glial amino acid transporters in a mouse neuropathic pain model,” Neuron Glia Biology, vol. 3, no. 2, pp. 141–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Cirillo, M. R. Bianco, A. M. Colangelo et al., “Reactive astrocytosis-induced perturbation of synaptic homeostasis is restored by nerve growth factor,” Neurobiology of Disease, vol. 41, no. 3, pp. 630–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Ullian, S. K. Sapperstein, K. S. Christopherson, and B. A. Barres, “Control of synapse number by glia,” Science, vol. 291, no. 5504, pp. 657–661, 2001. View at Publisher · View at Google Scholar · View at Scopus