About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 426437, 8 pages
http://dx.doi.org/10.1155/2012/426437
Research Article

Modulation of CREB in the Dorsal Lateral Geniculate Nucleus of Dark-Reared Mice

1Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, 1101 E. Marshall Street, Richmond, VA 23298, USA
2Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA

Received 12 September 2011; Accepted 4 October 2011

Academic Editor: Arianna Maffei

Copyright © 2012 Thomas E. Krahe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Bailey, D. Bartsch, and E. R. Kandel, “Toward a molecular definition of long-term memory storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13445–13452, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Silva, J. H. Kogan, P. W. Frankland, and S. Kida, “CREB and memory,” Annual Review of Neuroscience, vol. 21, pp. 127–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Deisseroth and R. W. Tsien, “Dynamic multiphosphorylation passwords for activity-dependent gene expression,” Neuron, vol. 34, no. 2, pp. 179–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Frank and M. E. Greenberg, “CREB: a mediator of long-term memory from mollusks to mammals,” Cell, vol. 79, no. 1, pp. 5–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Bito, K. Deisseroth, and R. W. Tsien, “CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression,” Cell, vol. 87, no. 7, pp. 1203–1214, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Deisseroth, H. Bito, and R. W. Tsien, “Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity,” Neuron, vol. 16, no. 1, pp. 89–101, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Finkbeiner, S. F. Tavazoie, A. Maloratsky, K. M. Jacobs, K. M. Harris, and M. E. Greenberg, “CREB: a major mediator of neuronal neurotrophin responses,” Neuron, vol. 19, no. 5, pp. 1031–1047, 1997. View at Scopus
  8. T. A. Pham, S. Impey, D. R. Storm, and M. P. Stryker, “CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period,” Neuron, vol. 22, no. 1, pp. 63–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Mower, D. S. Liao, E. J. Nestler, R. L. Neve, and A. S. Ramoa, “cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity,” Journal of Neuroscience, vol. 22, no. 6, pp. 2237–2245, 2002. View at Scopus
  10. D. Tropea, G. Kreiman, A. Lyckman et al., “Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex,” Nature Neuroscience, vol. 9, no. 5, pp. 660–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. E. Krahe, W. Wang, and A. E. Medina, “Phosphodiesterase inhibition increases CREB phosphorylation and restores orientation selectivity in a model of fetal alcohol spectrum disorders,” PLoS One, vol. 4, no. 8, Article ID e6643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. S. Desai, R. H. Cudmore, S. B. Nelson, and G. G. Turrigiano, “Critical periods for experience-dependent synaptic scaling in visual cortex,” Nature Neuroscience, vol. 5, no. 8, pp. 783–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Wallace and M. F. Bear, “A morphological correlate of synaptic scaling in visual cortex,” Journal of Neuroscience, vol. 24, no. 31, pp. 6928–6938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kirkwood, M. G. Rioult, and M. F. Bear, “Experience-dependent modification of synaptic plasticity in visual cortex,” Nature, vol. 381, no. 6582, pp. 526–528, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Gordon and M. P. Stryker, “Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse,” Journal of Neuroscience, vol. 16, no. 10, pp. 3274–3286, 1996. View at Scopus
  16. T. A. Pham, J. L. R. Rubenstein, A. J. Silva, D. R. Storm, and M. P. Stryker, “The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons,” Neuron, vol. 31, no. 3, pp. 409–420, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. B. M. Hooks and C. Chen, “Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse,” Neuron, vol. 52, no. 2, pp. 281–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. M. Hooks and C. Chen, “Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse,” Journal of Neuroscience, vol. 28, no. 18, pp. 4807–4817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Cancedda, E. Putignano, S. Impey, L. Maffei, G. M. Ratto, and T. Pizzorusso, “Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK,” Journal of Neuroscience, vol. 23, no. 18, pp. 7012–7020, 2003. View at Scopus
  20. L. Jaubert-Miazza, E. Green, F. S. Lo, K. Bui, J. Mills, and W. Guido, “Structural and functional composition of the developing retinogeniculate pathway in the mouse,” Visual Neuroscience, vol. 22, no. 5, pp. 661–676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Guido, “Refinement of the retinogeniculate pathway,” Journal of Physiology, vol. 586, no. 18, pp. 4357–4362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei, “Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation,” Vision Research, vol. 34, no. 6, pp. 709–720, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous system,” Nature Reviews Neuroscience, vol. 5, no. 2, pp. 97–107, 2004. View at Scopus
  26. A. Maffei, K. Nataraj, S. B. Nelson, and G. G. Turrigiano, “Potentiation of cortical inhibition by visual deprivation,” Nature, vol. 443, no. 7107, pp. 81–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. G. Turrigiano, “The self-tuning neuron: synaptic scaling of excitatory synapses,” Cell, vol. 135, no. 3, pp. 422–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Gong, H. Wang, S. Gu, S. P. Heximer, and M. Zhuo, “Genetic evidence for the requirement of adenylyl cyclase 1 in synaptic scaling of forebrain cortical neurons,” European Journal of Neuroscience, vol. 26, no. 2, pp. 275–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. C. Rutherford, S. B. Nelson, and G. G. Turrigiano, “BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses,” Neuron, vol. 21, no. 3, pp. 521–530, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-α,” Nature, vol. 440, no. 7087, pp. 1054–1059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kaneko, D. Stellwagen, R. C. Malenka, and M. P. Stryker, “Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex,” Neuron, vol. 58, no. 5, pp. 673–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. C. Thiagarajan, E. S. Piedras-Renteria, and R. W. Tsien, “α- and βCaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength,” Neuron, vol. 36, no. 6, pp. 1103–1114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Ibata, Q. Sun, and G. G. Turrigiano, “Rapid synaptic scaling induced by changes in postsynaptic firing,” Neuron, vol. 57, no. 6, pp. 819–826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Doyle, S. Pyndiah, S. De Gois, and J. D. Erickson, “Excitation-transcription coupling via calcium/calmodulindependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity,” Journal of Biological Chemistry, vol. 285, no. 19, pp. 14366–14376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Sherman, “The thalamus is more than just a relay,” Current Opinion in Neurobiology, vol. 17, no. 4, pp. 417–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. E. Bickford, A. Slusarczyk, E. K. Dilger, T. E. Krahe, C. Kucuk, and W. Guido, “Synaptic development of the mouse dorsal lateral geniculate nucleus,” Journal of Comparative Neurology, vol. 518, no. 5, pp. 622–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. E. Krahe and W. Guido, “Homeostatic plasticity in the visual thalamus by monocular deprivation,” Journal of Neuroscience, vol. 31, no. 18, pp. 6842–6849, 2011. View at Publisher · View at Google Scholar