About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 529057, 11 pages
http://dx.doi.org/10.1155/2012/529057
Research Article

Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors

1Hochschule Rhein-Waal, University of Applied Science, Südstr. 8, 47475 Kamp-Lintfort, Germany
2Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany

Received 1 March 2012; Accepted 13 August 2012

Academic Editor: Kristy A. Nielson

Copyright © 2012 Nele Wild-Wall et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Hommel, K. Z. H. Li, and S. C. Li, “Visual search across the life span,” Developmental Psychology, vol. 40, no. 4, pp. 545–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Wild-Wall, J. Hohnsbein, and M. Falkenstein, “Effects of ageing on cognitive task preparation as reflected by event-related potentials,” Clinical Neurophysiology, vol. 118, no. 3, pp. 558–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Lorenzo-López, E. Amenedo, and F. Cadaveira, “Feature processing during visual search in normal aging: electrophysiological evidence,” Neurobiology of Aging, vol. 29, no. 7, pp. 1101–1110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. T. Scialfa, S. P. Esau, and K. M. Joffe, “Age, target-distractor similarity, and visual search,” Experimental Aging Research, vol. 24, no. 4, pp. 337–358, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. F. Kramer and J. Kray, “Aging and attention,” in Lifespan Cognition: Mechanisms of Change, E. Bialystok and F. I. M. Craik, Eds., pp. 57–69, Oxford University Press, New York, NY, USA, 2006.
  6. H. Christensen, A. E. Korten, A. F. Jorm et al., “An analysis of diversity in the cognitive performance of elderly community dwellers: individual differences in change scores as a function of age,” Psychology and Aging, vol. 14, no. 3, pp. 365–379, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. L. Colsher and R. B. Wallace, “Longitudinal application of cognitive function measures in a defined population of community-dwelling elders,” Annals of Epidemiology, vol. 1, no. 3, pp. 215–230, 1991. View at Scopus
  9. M. V. Springer, A. R. McIntosh, G. Winocur, and C. L. Grady, “The relation between brain activity during memory tasks and years of education in young and older adults,” Neuropsychology, vol. 19, no. 2, pp. 181–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Andel, M. Crowe, N. L. Pedersen et al., “Complexity of work and risk of Alzheimer's disease: a population-based study of Swedish twins,” Journals of Gerontology B, vol. 60, no. 5, pp. P251–P258, 2005. View at Scopus
  11. H. Bosma, M. P. J. Van Boxtel, R. W. H. M. Ponds, P. J. Houx, A. Burdorf, and J. Jolles, “Mental work demands protect against cognitive impairment: MAAS prospective cohort study,” Experimental Aging Research, vol. 29, no. 1, pp. 33–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. M. Bielak, T. F. Hughes, B. J. Small, and R. A. Dixon, “It's never too late to engage in lifestyle activities: significant concurrent but not change relationships between lifestyle activities and cognitive speed,” Journals of Gerontology B, vol. 62, no. 6, pp. P331–P339, 2007. View at Scopus
  13. S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Lustig, P. Shah, R. Seidler, and P. A. Reuter-Lorenz, “Aging, training, and the brain: a review and future directions,” Neuropsychology Review, vol. 19, no. 4, pp. 504–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Li, F. Schmiedek, O. Huxhold, C. Röcke, J. Smith, and U. Lindenberger, “Working memory plasticity in old age: practice gain, transfer, and maintenance,” Psychology and Aging, vol. 23, no. 4, pp. 731–742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Ball, D. B. Berch, K. F. Helmers et al., “Effects of cognitive training interventions with older adults: a randomized controlled trial,” Journal of the American Medical Association, vol. 288, no. 18, pp. 2271–2281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. Green and D. Bavelier, “Action video game modifies visual selective attention,” Nature, vol. 423, no. 6939, pp. 534–537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Bherer, M. S. Peterson, A. F. Kramer, S. Colcombe, K. Erickson, and E. Becic, “Training effects on dual-task performance: are there age-related differences in plasticity of attentional control?” Psychology and Aging, vol. 20, no. 4, pp. 695–709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Skrandees, G. Lang, and A. Jedynak, “Sensory thresholds and neurophysiological correlates of human perceptual learning,” Spatial Vision, vol. 9, no. 4, pp. 475–489, 1996. View at Scopus
  21. S. L. Willis, S. L. Tennstedt, M. Marsiske et al., “Long-term effects of cognitive training on everyday functional outcomes in older adults,” Journal of the American Medical Association, vol. 296, no. 23, pp. 2805–2814, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. T. Scialfa, L. Jenkins, E. Hamaluk, and P. Skaloud, “Aging and the development of automaticity in conjunction search,” Journals of Gerontology B, vol. 55, no. 1, pp. P27–P46, 2000. View at Scopus
  23. W. Dennis, C. T. Scialfa, and G. Ho, “Age differences in feature selection in triple conjunction search,” Journals of Gerontology B, vol. 59, no. 4, pp. P191–P198, 2004. View at Scopus
  24. G. Ho and C. T. Scialfa, “Age, skill transfer, and conjunction search,” Journals of Gerontology B, vol. 57, no. 3, pp. P277–P287, 2002. View at Scopus
  25. A. D. Fisk, W. A. Rogers, B. P. Cooper, and D. K. Gilbert, “Automatic category search and its transfer: aging, type of search, and level of learning,” Journals of Gerontology B, vol. 52, no. 2, pp. P91–P102, 1997. View at Scopus
  26. K. Ball, J. D. Edwards, and L. A. Ross, “The impact of speed of processing training on cognitive and everyday functions.,” The Journals of Gerontology B, vol. 62, pp. 19–31, 2007. View at Scopus
  27. N. D. Cassavaugh and A. F. Kramer, “Transfer of computer-based training to simulated driving in older adults,” Applied Ergonomics, vol. 40, no. 5, pp. 943–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Caserta, J. Young, and C. M. Janelle, “Old dogs, new tricks: training the perceptual skills of senior tennis players,” Journal of Sport and Exercise Psychology, vol. 29, no. 4, pp. 479–497, 2007. View at Scopus
  29. J. D. Edwards, C. Myers, L. A. Ross et al., “The longitudinal impact of cognitive speed of processing training on driving mobility,” Gerontologist, vol. 49, no. 4, pp. 485–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Karbach and J. Kray, “How useful is executive control training? Age differences in near and far transfer of task-switching training,” Developmental Science, vol. 12, no. 6, pp. 978–990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Aamodt and S. Wang, Exercise on the Brain, The New York Times, New York, NY, USA, 2007.
  32. E. Düzel, N. Bunzeck, M. Guitart-Masip, and S. Düzel, “NOvelty-related motivation of anticipation and exploration by dopamine (NOMAD): implications for healthy aging,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 5, pp. 660–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. W. Mahncke, B. B. Connor, J. Appelman et al., “Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12523–12528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Owen, A. Hampshire, J. A. Grahn et al., “Putting brain training to the test,” Nature, vol. 465, no. 7299, pp. 775–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Song, Y. Ding, S. Fan et al., “Neural substrates of visual perceptual learning of simple and complex stimuli,” Clinical Neurophysiology, vol. 116, no. 3, pp. 632–639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Ilg, A. M. Wohlschläger, C. Gaser et al., “Gray matter increase induced by practice correlates with task-specific activation: a combined functional and morphometric magnetic resonance imaging study,” Journal of Neuroscience, vol. 28, no. 16, pp. 4210–4215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Jones, L. Nyberg, J. Sandblom et al., “Cognitive and neural plasticity in aging: general and task-specific limitations,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 864–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. Mozolic, S. Hayasaka, and P. J. Laurienti, “A cognitive training intervention increases resting cerebral blood flow in healthy older adults,” Frontiers in Human Neuroscience, vol. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Di Russo, A. Martinez, and S. A. Hillyard, “Source analysis of event-related cortical activity during visuo-spatial attention,” Cerebral Cortex, vol. 13, no. 5, pp. 486–499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. R. Folstein and C. Van Petten, “Influence of cognitive control and mismatch on the N2 component of the ERP: a review,” Psychophysiology, vol. 45, no. 1, pp. 152–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Eimer, M. Kiss, C. Press, and D. Sauter, “The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study,” Journal of Experimental Psychology, vol. 35, no. 5, pp. 1316–1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. D. Oades, D. Zerbin, and A. Dittmann-Balcar, “The topography of event-related potentials in passive and active conditions of a 3-tone auditory oddball test.,” International Journal of Neuroscience, vol. 81, no. 3-4, pp. 249–264, 1995. View at Scopus
  43. K. E. Crowley and I. M. Colrain, “A review of the evidence for P2 being an independent component process: age, sleep and modality,” Clinical Neurophysiology, vol. 115, no. 4, pp. 732–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. B. F. O'Donnell, J. M. Swearer, L. T. Smith, H. Hokama, and R. W. McCarley, “A topographic study of ERPs elicited by visual feature discrimination,” Brain Topography, vol. 10, no. 2, pp. 133–143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. E. G. Akyürek, A. Dinkelbach, and A. Schubö, “The neural processing fate of singleton target and nontarget stimuli,” Brain Research, vol. 1307, pp. 115–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. G. F. Potts, “An ERP index of task relevance evaluation of visual stimuli,” Brain and Cognition, vol. 56, no. 1, pp. 5–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Ding, Y. Song, S. Fan, Z. Qu, and L. Chen, “Specificity and generalization of visual perceptual learning in humans: an event-related potential study,” NeuroReport, vol. 14, no. 4, pp. 587–590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Polich, “Updating P300: an integrative theory of P3a and P3b,” Clinical Neurophysiology, vol. 118, no. 10, pp. 2128–2148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Kessler, H. J. Markowitsch, and P. Denzler, Mini-Mental-Status-Test (MMST), Beltz Test GmbH, Göttingen, Germany, 2000.
  50. S. Lehrl, Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B), Hogrefe, Göttingen, Germany, 2005.
  51. S. Lehrl, M. Lehrl, and E. Weickmann, MAT Gehirnjogging, Einführung in das Mentale AktivierungsTraining, Vless-Verlag, Ebersberg, Germany, 1994.
  52. T. W. Picton, S. Bentin, P. Berg et al., “Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria,” Psychophysiology, vol. 37, no. 2, pp. 127–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Gratton, M. G. H. Coles, and E. Donchin, “A new method for off-line removal of ocular artifact,” Electroencephalography and Clinical Neurophysiology, vol. 55, no. 4, pp. 468–484, 1983. View at Publisher · View at Google Scholar · View at Scopus
  54. R. D. Pascual-Marqui, “Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details,” Methods and Findings in Experimental and Clinical Pharmacology D, vol. 24, pp. 5–12, 2002. View at Scopus
  55. A. P. Holmes, R. C. Blair, J. D. G. Watson, and I. Ford, “Nonparametric analysis of statistic images from functional mapping experiments,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 7–22, 1996. View at Scopus
  56. J. S. Cant and M. A. Goodale, “Attention to form or surface properties modulates different regions of human occipitotemporal cortex,” Cerebral Cortex, vol. 17, no. 3, pp. 713–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Mechelh, G. W. Humphreys, K. Mayall, A. Olson, and C. J. Price, “Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading,” Proceedings of the Royal Society B, vol. 267, no. 1455, pp. 1909–1913, 2000. View at Scopus
  58. R. A. Epstein, “Parahippocampal and retrosplenial contributions to human spatial navigation,” Trends in Cognitive Sciences, vol. 12, no. 10, pp. 388–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. R. A. P. Roche and S. M. O'Mara, “Behavioural and electrophysiological correlates of visuomotor learning during a visual search task,” Cognitive Brain Research, vol. 15, no. 2, pp. 127–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Falkenstein, J. Hohnsbein, and J. Hoormann, “Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential,” Electroencephalography and Clinical Neurophysiology, vol. 92, no. 2, pp. 148–160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Falkenstein, J. Hohnsbein, and J. Hoormann, “Time pressure effects on late components of the event-related potential (ERP),” Journal of Psychophysiology, vol. 8, no. 1, pp. 22–30, 1994. View at Scopus