About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 682712, 8 pages
http://dx.doi.org/10.1155/2012/682712
Review Article

Lessons Learned from the Transgenic Huntington's Disease Rats

1Department of Neuroscience, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
2Department of Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
3Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands

Received 13 February 2012; Revised 21 May 2012; Accepted 4 June 2012

Academic Editor: Emma Frost

Copyright © 2012 Rinske Vlamings et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. O. Walker, “Huntington's disease,” The Lancet, vol. 369, no. 9557, pp. 218–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Bonelli and P. Hofmann, “A systematic review of the treatment studies in Huntington's disease since 1990,” Expert Opinion on Pharmacotherapy, vol. 8, no. 2, pp. 141–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. H. Myers, “Huntington's disease genetics,” NeuroRx, vol. 1, no. 2, pp. 255–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Andresen, J. Gayan, L. Djousse et al., “The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset,” Annals of Human Genetics, vol. 71, no. 3, pp. 295–301, 2007. View at Publisher · View at Google Scholar
  5. S. E. Andrew, Y. P. Goldberg, B. Kremer et al., “The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease,” Nature Genetics, vol. 4, no. 4, pp. 398–403, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. Gusella, N. S. Wexler, and P. M. Conneally, “A polymorphic DNA marker genetically linked to Huntington's disease,” Nature, vol. 306, no. 5940, pp. 234–238, 1983. View at Scopus
  7. M. E. MacDonald, C. M. Ambrose, M. P. Duyao et al., “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes,” Cell, vol. 72, no. 6, pp. 971–983, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Vlamings, A. Benazzouz, J. Chetrit, et al., “Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington's disease rats,” Neurobiology of Disease. In press.
  9. O. Kantor, Y. Temel, C. Holzmann et al., “Selective striatal neuron loss and alterations in behavior correlate with impaired striatal function in Huntington's disease transgenic rats,” Neurobiology of Disease, vol. 22, no. 3, pp. 538–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Jahanshahi, R. Vlamings, A. H. Kaya et al., “Hyperdopaminergic status in experimental Huntington disease,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 9, pp. 910–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. R. Jackson, I. Salecker, X. Dong et al., “Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons,” Neuron, vol. 21, no. 3, pp. 633–642, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. P. W. Faber, C. Voisine, D. C. King, E. A. Bates, and A. C. Hart, “Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 17131–17136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Jacobsen, C. S. Bawden, S. R. Rudiger et al., “An ovine transgenic Huntington's disease model,” Human Molecular Genetics, vol. 19, no. 10, Article ID ddq063, pp. 1873–1882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Morton and L. Avanzo, “Executive decision-making in the domestic sheep,” PloS one, vol. 6, no. 1, p. e15752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Yang, C. E. Wang, B. Zhao et al., “Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs,” Human Molecular Genetics, vol. 19, no. 20, Article ID ddq313, pp. 3983–3994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. H. Yang, P. H. Cheng, H. Banta et al., “Towards a transgenic model of Huntington's disease in a non-human primate,” Nature, vol. 453, no. 7197, pp. 921–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. von Horsten, I. Schmitt, H. P. Nguyen et al., “Transgenic rat model of Huntington's disease,” Human Molecular Genetics, vol. 12, no. 6, pp. 617–624, 2003. View at Publisher · View at Google Scholar
  18. G. Huntington, “On Chorea,” The Medical and Surgical Reporter, vol. 26, no. 4, 1872.
  19. J. S. Paulsen, R. E. Ready, J. M. Hamilton, M. S. Mega, and J. L. Cummings, “Neuropsychiatric aspects of Huntington's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 3, pp. 310–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Reedeker, R. C. Van Der Mast, E. J. Giltay, E. Van Duijn, and R. A. C. Roos, “Hypokinesia in Huntington's disease co-occurs with cognitive and global dysfunctioning,” Movement Disorders, vol. 25, no. 11, pp. 1612–1618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. File, A. Mahal, L. Mangiarini, and G. P. Bates, “Striking changes in anxiety in Huntington's disease transgenic mice,” Brain Research, vol. 805, no. 1-2, pp. 234–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. Nguyen, P. Kobbe, H. Rahne et al., “Behavioral abnormalities precede neuropathological markers in rats transgenic for Huntington's disease,” Human Molecular Genetics, vol. 15, no. 21, pp. 3177–3194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. H. Zeef, R. Vlamings, L. W. Lim et al., “Motor and non-motor behaviour in experimental Huntington's disease,” Behavioural Brain Research, vol. 226, no. 2, pp. 435–439, 2012. View at Publisher · View at Google Scholar
  24. D. H. Zeef, N. P. van Goethem, R. Vlamings et al., “Memory deficits in the transgenic rat model of Huntington's disease,” Behavioural Brain Research, vol. 227, no. 1, pp. 194–198, 2012. View at Publisher · View at Google Scholar
  25. A. Ciamei and A. Jennifer Morton, “Progressive imbalance in the interaction between spatial and procedural memory systems in the R6/2 mouse model of Huntington's disease,” Neurobiology of Learning and Memory, vol. 92, no. 3, pp. 417–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Grahn, J. A. Parkinson, and A. M. Owen, “The role of the basal ganglia in learning and memory: neuropsychological studies,” Behavioural Brain Research, vol. 199, no. 1, pp. 53–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Ghiglieri, C. Sgobio, C. Costa, B. Picconi, and P. Calabresi, “Striatum-hippocampus balance: from physiological behavior to interneuronal pathology,” Progress in Neurobiology, vol. 94, no. 2, pp. 102–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. G. Mumby, P. Piterkin, V. Lecluse, and H. Lehmann, “Perirhinal cortex damage and anterograde object-recognition in rats after long retention intervals,” Behavioural Brain Research, vol. 185, no. 2, pp. 82–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Eichenbaum, A. P. Yonelinas, and C. Ranganath, “The medial temporal lobe and recognition memory,” Annual Review of Neuroscience, vol. 30, pp. 123–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Abe, Y. Ishida, H. Nonaka, and T. Iwasaki, “Functional difference between rat perirhinal cortex and hippocampus in object and place discrimination tasks,” Behavioural Brain Research, vol. 197, no. 2, pp. 388–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Giralt, T. Rodrigo, E. D. Martín et al., “Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCγ activity and glutamate receptor expression,” Neuroscience, vol. 158, no. 4, pp. 1234–1250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. P. S. J. Murphy, R. J. Carter, L. A. Lione et al., “Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation,” Journal of Neuroscience, vol. 20, no. 13, pp. 5115–5123, 2000. View at Scopus
  33. A. J. Milnerwood and L. A. Raymond, “Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load,” Journal of Physiology, vol. 585, no. 3, pp. 817–831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. A. Simmons, C. S. Rex, L. Palmer et al., “Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4906–4911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Höhn, G. Dallérac, A. Faure et al., “Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease,” Journal of Neuroscience, vol. 31, no. 24, pp. 8986–8997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Cao, Y. Temel, A. Blokland et al., “Progressive deterioration of reaction time performance and choreiform symptoms in a new Huntington's disease transgenic ratmodel,” Behavioural Brain Research, vol. 170, no. 2, pp. 257–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. O. Dostrovsky and A. M. Lozano, “Mechanisms of deep brain stimulation,” Movement Disorders, vol. 17, supplement 3, pp. S63–S68, 2002. View at Scopus
  38. N. Urbain, N. Rentéro, D. Gervasoni, B. Renaud, and G. Chouvet, “The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat,” Journal of Neuroscience, vol. 22, no. 19, pp. 8665–8675, 2002. View at Scopus
  39. P. J. Magill, J. P. Bolam, and M. D. Bevan, “Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram,” Journal of Neuroscience, vol. 20, no. 2, pp. 820–833, 2000. View at Scopus
  40. A. Benazzouz and M. Hallett, “Mechanism of action of deep brain stimulation,” Neurology, vol. 55, no. 12, pp. S13–S16, 2000. View at Scopus
  41. X. Liu, H. L. Ford-Dunn, G. N. Hayward et al., “The oscillatory activity in the Parkinsonian subthalamic nucleus investigated using the macro-electrodes for deep brain stimulation,” Clinical Neurophysiology, vol. 113, no. 11, pp. 1667–1672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam, and C. J. Wilson, “Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network,” Trends in Neurosciences, vol. 25, no. 10, pp. 525–531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. W. C. Miller and M. R. DeLong, “Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate model of parkinsonism,” in The Basal Ganglia II: Structure and Function, M. B. Carpenter and A. Jayaraman, Eds., pp. 415–427, Plenum, New York, NY, USA, 1987.
  44. H. Bergman, T. Wichmann, and M. R. DeLong, “Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus,” Science, vol. 249, no. 4975, pp. 1436–1438, 1990. View at Scopus
  45. A. L. Benabid, P. Pollak, A. Louveau, S. Henry, and J. De Rougemont, “Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease,” Applied Neurophysiology, vol. 50, no. 1–6, pp. 344–346, 1987. View at Scopus
  46. A. Benazzouz, C. Gross, J. Feger, T. Boraud, and B. Bioulac, “Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys,” European Journal of Neuroscience, vol. 5, no. 4, pp. 382–389, 1993. View at Scopus
  47. P. Pollak, A. L. Benabid, C. Gross et al., “Effects of subthalamic nucleus stimulation in Parkinson's disease,” Revue Neurologique, vol. 149, no. 3, pp. 175–176, 1993. View at Scopus
  48. P. Limousin, P. Pollak, A. Benazzouz et al., “Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation,” The Lancet, vol. 345, no. 8942, pp. 91–95, 1995. View at Scopus
  49. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Joel, “Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease,” Movement Disorders, vol. 16, no. 3, pp. 407–423, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Temel, A. Blokland, H. W. M. Steinbusch, and V. Visser-Vandewalle, “The functional role of the subthalamic nucleus in cognitive and limbic circuits,” Progress in Neurobiology, vol. 76, no. 6, pp. 393–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Zhu, M. Bartol, K. Shen, and S. W. Johnson, “Excitatory effects of dopamine on subthalamic nucleus neurons: In vitro study of rats pretreated with 6-hydroxydopamine and levodopa,” Brain Research, vol. 945, no. 1, pp. 31–40, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Heinsen, M. Strik, M. Bauer et al., “Cortical and striatal neurone number in Huntington's disease,” Acta Neuropathologica, vol. 88, no. 4, pp. 320–333, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. M. F. Beal and R. J. Ferrante, “Experimental therapeutics in transgenic mouse models of Huntington's disease,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 373–384, 2004. View at Scopus
  55. E. J. Slow, J. van Raamsdonk, D. Rogers et al., “Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease,” Human Molecular Genetics, vol. 12, no. 13, pp. 1555–1567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. P. Vonsattel, R. H. Myers, and T. J. Stevens, “Neuropathological classification of Huntington's disease,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 559–577, 1985. View at Scopus
  57. B. R. Miller, A. G. Walker, S. C. Fowler et al., “Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington's disease,” Neurobiology of Disease, vol. 37, no. 1, pp. 106–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. V. MacDonald and G. M. Halliday, “Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson's disease,” Movement Disorders, vol. 17, no. 6, pp. 1166–1173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. E. D. Bird, “Chemical pathology of Huntington's disease,” Annual Review of Pharmacology and Toxicology, vol. 20, pp. 533–551, 1980. View at Scopus
  60. E. D. Bird, E. G. Spokes, and L. L. Iversen, “Dopamine and noradrenaline in post-mortem brain in Huntington's disease and schizophrenic illness,” Acta Psychiatrica Scandinavica, vol. 280, pp. 63–73, 1980. View at Scopus
  61. E. G. S. Spokes, “Neurochemical alterations in Huntington's chorea. A study of post mortem brain tissue,” Brain, vol. 103, no. 1, pp. 179–210, 1980. View at Scopus
  62. S. L. Mason and R. A. Barker, “Emerging drug therapies in Huntington's disease,” Expert Opinion on Emerging Drugs, vol. 14, no. 2, pp. 273–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. S. N. Haber and J. L. Fudge, “The primate substantia Nigra and VTA: integrative circuitry and function,” Critical Reviews in Neurobiology, vol. 11, no. 4, pp. 323–342, 1997. View at Scopus
  64. D. Joel and I. Weiner, “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neuroscience, vol. 96, no. 3, pp. 451–474, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. G. J. Yohrling, G. C. T. Jiang, M. M. DeJohn et al., “Analysis of cellular, transgenic and human models of Huntington's disease reveals tyrosine hydroxylase alterations and substantia nigra neuropathology,” Molecular Brain Research, vol. 119, no. 1, pp. 28–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. A. Mann, “Subcortical afferent projection systems in Huntington's chorea,” Acta Neuropathologica, vol. 78, no. 5, pp. 551–554, 1989. View at Scopus
  67. Y. Temel, V. Visser-Vandewalle, S. Kaplan et al., “Protection of nigral cell death by bilateral subthalamic nucleus stimulation,” Brain Research, vol. 1120, no. 1, pp. 100–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. T. D. Aumann, I. Gantois, K. Egan et al., “SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta,” Experimental Neurology, vol. 213, no. 2, pp. 419–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Paul, W. Meissner, S. Rein et al., “Ablation of the subthalamic nucleus protects dopaminergic phenotype but not cell survival in a rat model of Parkinson's disease,” Experimental Neurology, vol. 185, no. 2, pp. 272–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. F. J. Bode, M. Stephan, H. Suhling et al., “Sex differences in a transgenic rat model of Huntington's disease: decreased 17β-estradiol levels correlate with reduced numbers of DARPP32+ neurons in males,” Human Molecular Genetics, vol. 17, no. 17, pp. 2595–2609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. A. Fielding, S. P. Brooks, A. Klein, Z. Bayram-Weston, L. Jones, and S. B. Dunnett, “Profiles of motor and cognitive impairment in the transgenic rat model of Huntington's disease,” Brain Research Bulletin, vol. 88, no. 2-3, pp. 223–236, 2012. View at Publisher · View at Google Scholar
  72. S. Brooks, S. Fielding, M. Döbrössy, S. von Hörsten, and S. Dunnett, “Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance,” Brain Research Bulletin, vol. 79, no. 5, pp. 310–315, 2009. View at Publisher · View at Google Scholar · View at Scopus