About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 852423, 12 pages
http://dx.doi.org/10.1155/2012/852423
Review Article

Adaptive Neuroplastic Responses in Early and Late Hemispherectomized Monkeys

1Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
2Institute of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark
3School of Optometry, University of Montreal, Montreal, QC, Canada H3C 3J7

Received 13 February 2012; Revised 29 March 2012; Accepted 12 April 2012

Academic Editor: Pietro Pietrini

Copyright © 2012 Mark W. Burke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. E. Wilson, “Cerebral hemispherectomy for infantile hemiplegia: a REPORT of 50 cases,” Brain, vol. 93, no. 1, pp. 147–180, 1970. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. French, D. R. Johnson, I. A. Brown, and F. B. van Bergen, “Cerebral hemispherectomy for control of intractable convulsive seizures,” Journal of Neurosurgery, vol. 12, no. 2, pp. 154–164, 1955. View at Scopus
  3. R. W. Krynauw, “Infantile hemiplegia treated by removal of one cerebral hemisphere,” South African Medical Journal, vol. 24, no. 27, pp. 539–546, 1950. View at Scopus
  4. H. H. White, “Cerebral hemispherectomy in the treatment of infantile hemiplegia; review of the literature and report of two cases,” Confinia Neurologica, vol. 21, pp. 1–50, 1961. View at Scopus
  5. R. van Empelen, A. Jennekens-Schinkel, E. Buskens, P. J. M. Helders, and O. van Nieuwenhuizen, “Functional consequences of hemispherectomy,” Brain, vol. 127, no. 9, pp. 2071–2079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Devlin, J. H. Cross, W. Harkness et al., “Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence,” Brain, vol. 126, no. 3, pp. 556–566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Ptito and S. E. Leh, “Neural substrates of blindsight after hemispherectomy,” Neuroscientist, vol. 13, no. 5, pp. 506–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. A. French and D. R. Johnson, “Observations on the motor system following cerebral hemispherectomy,” Neurology, vol. 5, no. 1, pp. 11–14, 1955. View at Scopus
  9. J. Gagnier, La sensibilite thermique dns las cas d'hemispherectomie humaine, Maitrise Inedit, University of Montreal, Montreal, Canada, 1992.
  10. F. Chiricozzi, D. Chieffo, D. Battaglia et al., “Developmental plasticity after right hemispherectomy in an epileptic adolescent with early brain injury,” Child's Nervous System, vol. 21, no. 11, pp. 960–969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. M. Govindan, H. T. Chugani, A. F. Luat, and S. Sood, “Presurgical prediction of motor functional loss using tractography,” Pediatric Neurology, vol. 43, no. 1, pp. 70–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Boire, H. Théoret, and M. Ptito, “Visual pathways following cerebral hemispherectomy,” Progress in Brain Research, vol. 134, pp. 379–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ptito, M. Herbin, D. Boire, and A. Ptito, “Neural bases of residual vision in hemicorticectomized monkeys,” Progress in Brain Research, vol. 112, pp. 385–404, 1996. View at Scopus
  14. M. W. Burke, S. Zangenehpour, and M. Ptito, “Partial recovery of hemiparesis following hemispherectomy in infant monkeys,” Neuroscience Letters, vol. 469, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Boire, H. Theoret, M. Herbin, C. Casanova, and M. Ptito, “Retinogeniculate projections following early cerebral hemispherectomy in the vervet monkey,” Experimental Brain Research, vol. 135, no. 3, pp. 373–381, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ptito and S. Desgent, Eds., Sensory Input-Based Adaptation and Brain Architecture, Cambridge University Press, Cambridge, UK, 2006.
  17. B. R. Payne and S. G. Lomber, “Plasticity of the visual cortex after injury: what's different about the young brain?” Neuroscientist, vol. 8, no. 2, pp. 174–185, 2002. View at Scopus
  18. D. O. Frost, D. Boire, G. Gingras, and M. Ptito, “Surgically created neural pathways mediate visual pattern discrimination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11068–11073, 2000. View at Scopus
  19. M. Ptito, M. Dalby, and A. Gjedde, “Visual field recovery in a patient with bilateral occipital lobe damage,” Acta Neurologica Scandinavica, vol. 99, no. 4, pp. 252–254, 1999. View at Scopus
  20. C. K. Kong, L. Y. Wong, and M. K. Yuen, “Visual field plasticity in a female with right occipital cortical dysplasia,” Pediatric Neurology, vol. 23, no. 3, pp. 256–260, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. O. Dumoulin, J. D. Jirsch, and A. Bernasconi, “Functional organization of human visual cortex in occipital polymicrogyria,” Human Brain Mapping, vol. 28, no. 12, pp. 1302–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Ptito, P. Johannsen, J. Faubert, and A. Gjedde, “Activation of human extrageniculostriate pathways after damage to area V1,” NeuroImage, vol. 9, no. 1, pp. 97–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Kasten, D. A. Poggel, and B. A. Sabel, “Computer-based training of stimulus detection improves color and simple pattern recognition in the defective field of hemianopic subjects,” Journal of Cognitive Neuroscience, vol. 12, no. 6, pp. 1001–1012, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. B. A. Sabel and E. Kasten, “Restoration of vision by training of residual functions,” Current Opinion in Ophthalmology, vol. 11, no. 6, pp. 430–436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Bouwmeester, J. Heutink, and C. Lucas, “The effect of visual training for patients with visual field defects due to brain damage: a systematic review,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 6, pp. 555–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Schmielau and E. K. Wong Jr., “Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article no. 31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Chokron, C. Perez, M. Obadia, I. Gaudry, L. Laloum, and O. Gout, “From blindsight to sight: cognitive rehabilitation of visual field defects,” Restorative Neurology and Neuroscience, vol. 26, no. 4-5, pp. 305–320, 2008. View at Scopus
  28. S. M. Sherman, “Visual fields of cats with cortical and tectal lesions,” Science, vol. 185, no. 4148, pp. 355–357, 1974. View at Scopus
  29. S. G. Lomber, B. R. Payne, C. C. Hilgetag, and J. R. Rushmore, “Restoration of visual orienting into a cortically blind hemifield by reversible deactivation of posterior parietal cortex or the superior colliculus,” Experimental Brain Research, vol. 142, no. 4, pp. 463–474, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Vilensky, S. Gilman, E. A. Dunn, and W. J. Wilson, “Utilization of the Denny-Brown collection: differential recovery of forelimb and hind limb stepping after extensive unilateral cerebral lesions,” Behavioural Brain Research, vol. 82, no. 2, pp. 223–233, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Kennard, “Reactions of monkeys of various ages to partial and complete decortication,” Journal of Neuropathology and Experimental Neurology, vol. 3, no. 21, pp. 289–310, 1944.
  32. N. Honda, T. Matuoka, Y. Sawada et al., “Reorganization of sensorimotor function after functional hemispherectomy studied using near-infrared spectroscopy,” Pediatric Neurosurgery, vol. 46, no. 4, pp. 313–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. G. Bittar, J. V. Rosenfeld, G. L. Klug, I. J. Hopkins, and A. Simon Harvey, “Resective surgery in infants and young children with intractable epilepsy,” Journal of Clinical Neuroscience, vol. 9, no. 2, pp. 142–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. G. Bittar, A. Olivier, A. F. Sadikot, F. Andermann, and D. C. Reutens, “Cortical motor and somatosensory representation: effect of cerebral lesions,” Journal of Neurosurgery, vol. 92, no. 2, pp. 242–248, 2000. View at Scopus
  35. H. Backlund, C. Morin, A. Ptito, M. C. Bushnell, and H. Olausson, “Tactile functions after cerebral hemispherectomy,” Neuropsychologia, vol. 43, no. 3, pp. 332–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Werth, “Visual functions without the occipital lobe or after cerebral hemispherectomy in infancy,” European Journal of Neuroscience, vol. 24, no. 10, pp. 2932–2944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Holloway, D. G. Gadian, F. Vargha-Khadem, D. A. Porter, S. G. Boyd, and A. Connelly, “The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study,” Brain, vol. 123, no. 12, pp. 2432–2444, 2000. View at Scopus
  38. H. Olausson, B. Ha, G. H. Duncan et al., “Cortical activation by tactile and painful stimuli in hemispherectomized patients,” Brain, vol. 124, no. 5, pp. 916–927, 2001. View at Scopus
  39. R. G. Bittar, A. Ptito, and D. C. Reutens, “Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study,” Journal of Neurosurgery, vol. 92, no. 1, pp. 45–51, 2000. View at Scopus
  40. P. Lauzon, D. Boire, and M. Ptito, Stereological Evaluation of Dorsal Column Nuclei in Normal and Early Hemispherectomized Monkeys, Society for Neuroscience, Miami, Fla, USA, 1999.
  41. G. J. M. Rutten, N. F. Ramsey, P. C. van Rijen, H. Franssen, and C. W. M. van Veelen, “Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation,” Journal of Child Neurology, vol. 17, no. 4, pp. 292–297, 2002. View at Scopus
  42. R. Benecke, B. U. Meyer, and H. J. Freund, “Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation,” Experimental Brain Research, vol. 83, no. 2, pp. 419–426, 1991. View at Scopus
  43. J. T. Choi, E. P. G. Vining, S. Mori, and A. J. Bastian, “Sensorimotor function and sensorimotor tracts after hemispherectomy,” Neuropsychologia, vol. 48, no. 5, pp. 1192–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Maehara, H. Shimizu, K. Kawai et al., “Postoperative development of children after hemispherotomy,” Brain and Development, vol. 24, no. 3, pp. 155–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ptito, A. Fortin, and A. Ptito, “Living with half a brain: the effects of hemispherectomy in humans,” Revue de Neuropsychologie, vol. 12, no. 1, pp. 185–210, 2002. View at Scopus
  46. P. Stoerig, “Cueless blindsight,” Frontiers in Human Neuroscience, vol. 3, article 74, 2010. View at Publisher · View at Google Scholar
  47. T. Moore, H. R. Rodman, A. B. Repp, C. G. Gross, and R. S. Mezrich, “Greater residual vision in monkeys after striate cortex damage in infancy,” Journal of Neurophysiology, vol. 76, no. 6, pp. 3928–3933, 1996. View at Scopus
  48. J. R. Villablanca and D. A. Hovda, “Developmental neuroplasticity in a model of cerebral hemispherectomy and stroke,” Neuroscience, vol. 95, no. 3, pp. 625–637, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. B. R. Payne, S. G. Lomber, and C. D. Gelston, “Graded sparing of visually-guided orienting following primary visual cortex ablations within the first postnatal month,” Behavioural Brain Research, vol. 117, no. 1-2, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Ptito, A. Fortin, and M. Ptito, “‘Seeing’ in the blind hemifield following hemispherectomy,” Progress in Brain Research, vol. 134, pp. 367–378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. M. Wessinger, R. Fendrich, A. Ptito, J. G. Villemure, and M. S. Gazzaniga, “Residual vision with awareness in the field contralateral to a partial or complete functional hemispherectomy,” Neuropsychologia, vol. 34, no. 11, pp. 1129–1137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. S. E. Leh, H. Johansen-Berg, and A. Ptito, “Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography,” Brain, vol. 129, no. 7, pp. 1822–1832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Cowey, “Visual system: how does blindsight arise?” Current Biology, vol. 20, no. 17, pp. R702–R704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Cowey, “The blindsight saga,” Experimental Brain Research, vol. 200, no. 1, pp. 3–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. G. Bittar, A. Olivier, A. F. Sadikot et al., “Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation,” Journal of Neurosurgery, vol. 90, no. 3, pp. 478–483, 1999. View at Scopus
  56. E. Marx, T. Stephan, S. Bense, T. A. Yousry, M. Dieterich, and T. Brandt, “Motion perception in the ipsilateral visual field of a hemispherectomized patient,” Journal of Neurology, vol. 249, no. 9, pp. 1303–1306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Herbin, D. Boire, H. Théoret, and M. Ptito, “Transneuronal degeneration of retinal ganglion cells in early hemispherectomized monkeys,” NeuroReport, vol. 10, no. 7, pp. 1447–1452, 1999. View at Scopus
  58. D. Boire, H. Théoret, and M. Ptito, “Stereological evaluation of neurons and glia in the monkey dorsal lateral geniculate nucleus following an early cerebral hemispherectomy,” Experimental Brain Research, vol. 142, no. 2, pp. 208–220, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Théoret, D. Boire, M. Herbin, and M. Ptito, “Anatomical sparing in the superior colliculus of hemispherectomized monkeys,” Brain Research, vol. 894, no. 2, pp. 274–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Théoret, D. Boire, M. Herbin, and M. Ptito, “Stereological evaluation of substantia nigra cell number in normal and hemispherectomized monkeys,” Brain Research, vol. 835, no. 2, pp. 354–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. R. M. Beckstead and A. Frankfurter, “The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey,” Neuroscience, vol. 7, no. 10, pp. 2377–2388, 1982. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Théoret, D. Boire, and M. Ptito, “Retinal projections to the pregeniculate nucleus in the hemispherectomized monkey,” Brain Research Bulletin, vol. 53, no. 2, pp. 239–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Liégeois, A. T. Morgan, L. H. Stewart, J. Helen Cross, A. P. Vogel, and F. Vargha-Khadem, “Speech and oral motor profile after childhood hemispherectomy,” Brain and Language, vol. 114, no. 2, pp. 126–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. W. Burgess and J. R. Villablanca, “Recovery of function after neonatal or adult hemispherectomy in cats. II. Limb bias and development, paw usage, locomotion and rehabilitative effects of exercise,” Behavioural Brain Research, vol. 20, no. 1, pp. 1–17, 1986. View at Scopus
  65. J. W. Burgess, J. R. Villablanca, and M. S. Levine, “Recovery of functions after neonatal or adult hemispherectomy in cats. III. Complex functions: open field exploration, social interactions, maze and holeboard performances,” Behavioural Brain Research, vol. 20, no. 2, pp. 217–230, 1986. View at Scopus
  66. J. R. Villablanca, J. W. Burgess, and C. E. Olmstead, “Recovery of function after neonatal or adult hemispherectomy in cats: I. Time course, movement, posture and sensorimotor tests,” Behavioural Brain Research, vol. 19, no. 3, pp. 205–226, 1986. View at Scopus
  67. H. Olausson, S. Marchand, R. G. Bittar, J. Bernier, A. Ptito, and M. C. Bushnell, “Central pain in a hemispherectomized patient,” European Journal of Pain, vol. 5, no. 2, pp. 209–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. C. J. Graveline, D. J. Mikulis, A. P. Crawley, and P. A. Hwang, “Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation,” Pediatric Neurology, vol. 19, no. 5, pp. 337–342, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Rath, R. Schmidhammer, T. Steinkellner, N. Klinger, A. Geissler, and R. Beisteiner, “Evaluation of functional cortex for the diseased hand in a patient after hemispherectomy,” Archives of Neurology, vol. 65, no. 12, pp. 1664–1665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Pilato, M. Dileone, F. Capone et al., “Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient: a TMS and fMRI study,” Epilepsy Research, vol. 85, no. 2-3, pp. 243–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Leonhardt, U. Bingel, G. Spiekermann, M. Kurthen, S. Müller, and A. Hufnagel, “Cortical activation in patients with functional hemispherectomy,” Journal of Neurology, vol. 248, no. 10, pp. 881–888, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. S. de Bode, G. W. Mathern, S. Bookheimer, and B. Dobkin, “Locomotor training remodels fMRI sensorimotor cortical activations in children after cerebral hemispherectomy,” Neurorehabilitation and Neural Repair, vol. 21, no. 6, pp. 497–508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Müller, F. Kass-Iliyya, and M. Reitz, “Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation,” Annals of Neurology, vol. 42, no. 5, pp. 705–711, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Dietz, “Spinal cord pattern generators for locomotion,” Clinical Neurophysiology, vol. 114, no. 8, pp. 1379–1389, 2003. View at Publisher · View at Google Scholar · View at Scopus