About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2012 (2012), Article ID 921732, 11 pages
http://dx.doi.org/10.1155/2012/921732
Review Article

GABAergic Neuron Specification in the Spinal Cord, the Cerebellum, and the Cochlear Nucleus

Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogahahigashi, Kodaira, Tokyo 187-8502, Japan

Received 28 February 2012; Revised 17 May 2012; Accepted 17 May 2012

Academic Editor: Małgorzata Kossut

Copyright © 2012 Kei Hori and Mikio Hoshino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kitamura, M. Yanazawa, N. Sugiyama et al., “Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans,” Nature Genetics, vol. 32, no. 3, pp. 359–369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. B. Butt, V. H. Sousa, M. V. Fuccillo et al., “The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes,” Neuron, vol. 59, no. 5, pp. 722–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Galanopoulou, “Mutations affecting GABAergic signaling in seizures and epilepsy,” Pflugers Archiv European Journal of Physiology, vol. 460, no. 2, pp. 505–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Poduri and D. Lowenstein, “Epilepsy genetics-past, present, and future,” Current Opinion in Genetics and Development, vol. 21, no. 3, pp. 325–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Köhler, W. C. da Silva, F. Benetti, and J. S. Bonini, “Histaminergic mechanisms for modulation of memory systems,” Neural Plasticity, vol. 2011, Article ID 328602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Tiligada, K. Kyriakidis, P. L. Chazot, and M. B. Passani, “Histamine pharmacology and new CNS drug targets,” CNS Neuroscience and Therapeutics, vol. 17, no. 6, pp. 620–628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Y. Wu and H. Prentice, “Role of taurine in the central nervous system,” Journal of Biomedical Science, vol. 17, supplement 1, article S1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-E. Allain, H. Le Corronc, A. Delpy et al., “Maturation of the GABAergic transmission in normal and pathologic motoneurons,” Neural Plasticity, vol. 2011, Article ID 905624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Friauf, M. B. Rust, T. Schulenborg, and J. J. Hirtz, “Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system,” Hearing Research, vol. 279, no. 1-2, pp. 96–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Nishimaru and M. Kakizaki, “The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord,” Acta Physiologica, vol. 197, no. 2, pp. 83–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ben-Ari, J. L. Gaiarsa, R. Tyzio, and R. Khazipov, “GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations,” Physiological Reviews, vol. 87, no. 4, pp. 1215–1284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Ben-Ari, R. Tyzio, and A. Nehlig, “Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates,” Epilepsia, vol. 52, no. 9, pp. 1544–1558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Barker, T. Behar, Y.-X. Li et al., “GABAergic cells and signals in CNS development,” Perspectives on Developmental Neurobiology, vol. 5, no. 2-3, pp. 305–322, 1998. View at Scopus
  14. A. J. Bolteus and A. Bordey, “GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone,” Journal of Neuroscience, vol. 24, no. 35, pp. 7623–7631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. C. Luk and A. F. Sadikot, “GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology,” Neuroscience, vol. 104, no. 1, pp. 93–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Maric, Q. Y. Liu, I. Maric et al., “GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl- channels,” Journal of Neuroscience, vol. 21, no. 7, pp. 2343–2360, 2001. View at Scopus
  17. K. Obata, “Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture,” Developmental Neuroscience, vol. 19, no. 1, pp. 117–119, 1997. View at Scopus
  18. H. L. Fields, M. M. Heinricher, and P. Mason, “Neurotransmitters in nociceptive modulatory circuits,” Annual Review of Neuroscience, vol. 14, pp. 219–245, 1991. View at Scopus
  19. M. Fitzgerald, “The development of nociceptive circuits,” Nature Reviews Neuroscience, vol. 6, no. 7, pp. 507–520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. McCormick and D. Contreras, “On the cellular and network bases of epileptic seizures,” Annual Review of Physiology, vol. 63, pp. 815–846, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Rossignol, “Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders,” Neural Plasticity, vol. 2011, Article ID 649325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Woolf, P. Shortland, and R. E. Coggeshall, “Peripheral nerve injury triggers central sprouting of myelinated afferents,” Nature, vol. 355, no. 6355, pp. 75–78, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. P. G. Anastasiades and S. J. B. Butt, “Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex,” European Journal of Neuroscience, vol. 34, no. 10, pp. 1542–1552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Corbin and S. J. B. Butt, “Developmental mechanisms for the generation of telencephalic interneurons,” Developmental Neurobiology, vol. 71, no. 8, pp. 710–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. R. Hernández-Miranda, J. G. Parnavelas, and F. Chiara, “Molecules and mechanisms involved in the generation and migration of cortical interneurons,” ASN Neuro, vol. 2, no. 2, pp. 75–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Rudomin and R. F. Schmidt, “Presynaptic inhibition in the vertebrate spinal cord revisited,” Experimental Brain Research, vol. 129, no. 1, pp. 1–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Caspary and K. V. Anderson, “Patterning cell types in the dorsal spinal cord: what the mouse mutants say,” Nature Reviews, vol. 4, no. 4, pp. 289–297, 2003. View at Scopus
  28. A. W. Helms and J. E. Johnson, “Specification of dorsal spinal cord interneurons,” Current Opinion in Neurobiology, vol. 13, no. 1, pp. 42–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. K. Gross, M. Dottori, and M. Goulding, “Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord,” Neuron, vol. 34, no. 4, pp. 535–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Müller, H. Brohmann, A. Pierani et al., “The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord,” Neuron, vol. 34, no. 4, pp. 551–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Bertrand, D. S. Castro, and F. Guillemot, “Proneural genes and the specification of neural cell types,” Nature Reviews Neuroscience, vol. 3, no. 7, pp. 517–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Gowan, A. W. Helms, T. L. Hunsaker et al., “Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons,” Neuron, vol. 31, no. 2, pp. 219–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Glasgow, R. M. Henke, R. J. MacDonald, C. V. E. Wright, and J. E. Johnson, “Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn,” Development, vol. 132, no. 24, pp. 5461–5469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Hori, J. Cholewa-Waclaw, Y. Nakada et al., “A nonclassical bHLH-Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling,” Genes and Development, vol. 22, no. 2, pp. 166–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Cheng, A. Arata, R. Mizuguchi et al., “Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates,” Nature Neuroscience, vol. 7, no. 5, pp. 510–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Cheng, O. A. Samad, Y. Xu et al., “Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes,” Nature Neuroscience, vol. 8, no. 11, pp. 1510–1515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. W. Helms, J. Battiste, R. M. Henke et al., “Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons,” Development, vol. 132, no. 12, pp. 2709–2719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Mizuguchi, S. Kriks, R. Cordes, A. Gossler, Q. Ma, and M. Goulding, “Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons,” Nature Neuroscience, vol. 9, no. 6, pp. 770–778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Wildner, T. Müller, S. H. Cho et al., “dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development,” Development, vol. 133, no. 11, pp. 2105–2113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Pillai, A. Mansouri, R. Behringer, H. Westphal, and M. Goulding, “Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord,” Development, vol. 134, no. 2, pp. 357–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. M. Henke, T. K. Savage, D. M. Meredith et al., “Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord,” Development, vol. 136, no. 17, pp. 2945–2954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Goulding, “Circuits controlling vertebrate locomotion: moving in a new direction,” Nature Reviews Neuroscience, vol. 10, no. 7, pp. 507–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. T. M. Jessell, “Neuronal specification in the spinal cord: inductive signals and transcriptional codes,” Nature Reviews Genetics, vol. 1, no. 1, pp. 20–29, 2000. View at Scopus
  44. J. Briscoe, A. Pierani, T. M. Jessell, and J. Ericson, “A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube,” Cell, vol. 101, no. 4, pp. 435–445, 2000. View at Scopus
  45. M. Goulding, G. Lanuza, T. Sapir, and S. Narayan, “The formation of sensorimotor circuits,” Current Opinion in Neurobiology, vol. 12, no. 5, pp. 508–515, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. P. E. Phelps, R. P. Barber, and J. E. Vaughn, “Embryonic development of choline acetyltransferase in thoracic spinal motor neurons: somatic and autonomic neurons may be derived from a common cellular group,” Journal of Comparative Neurology, vol. 307, no. 1, pp. 77–86, 1991. View at Scopus
  47. A. E. Stepien and S. Arber, “Probing the locomotor conundrum: descending the “V” interneuron ladder,” Neuron, vol. 60, no. 1, pp. 1–4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. P. Matise and A. L. Joyner, “Expression patterns of developmental control genes in normal and engrailed-1 mutant mouse spinal cord reveal early diversity in developing interneurons,” Journal of Neuroscience, vol. 17, no. 20, pp. 7805–7816, 1997. View at Scopus
  49. L. Moran-Rivard, T. Kagawa, H. Saueressig, M. K. Gross, J. Burrill, and M. Goulding, “Evx1 is a postmitotic determinant of V0 interneuron identity in the spinal cord,” Neuron, vol. 29, no. 2, pp. 385–399, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Pierani, L. Moran-Rivard, M. J. Sunshine, D. R. Littman, M. Goulding, and T. M. Jessell, “Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1,” Neuron, vol. 29, no. 2, pp. 367–384, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Saueressig, J. Burrill, and M. Goulding, “Engrailed-1 and Netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons,” Development, vol. 126, no. 19, pp. 4201–4212, 1999. View at Scopus
  52. F. J. Stam, T. J. Hendricks, J. Zhang et al., “Renshaw cell interneuron specialization is controlled by a temporally restricted transcription factor program,” Development, vol. 139, no. 1, pp. 179–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Wenner, M. J. O'Donovan, and M. P. Matise, “Topographical and physiological characterization of interneurons that express Engrailed-1 in the embryonic chick spinal cord,” Journal of Neurophysiology, vol. 84, no. 5, pp. 2651–2657, 2000. View at Scopus
  54. F. J. Alvarez, P. C. Jonas, T. Sapir et al., “Postnatal phenotype and localization of spinal cord V1 derived interneurons,” Journal of Comparative Neurology, vol. 493, no. 2, pp. 177–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Sapir, E. J. Geiman, Z. Wang et al., “Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development,” Journal of Neuroscience, vol. 24, no. 5, pp. 1255–1264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. G. M. Lanuza, S. Gosgnach, A. Pierani, T. M. Jessell, and M. Goulding, “Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements,” Neuron, vol. 42, no. 3, pp. 375–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Pierani, S. Brenner-Morton, C. Chiang, and T. M. Jessell, “A Sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord,” Cell, vol. 97, no. 7, pp. 903–915, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Vallstedt, J. Muhr, A. Pattyn et al., “Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification,” Neuron, vol. 31, no. 5, pp. 743–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Al-Mosawie, J. M. Wilson, and R. M. Brownstone, “Heterogeneity of V2-derived interneurons in the adult mouse spinal cord,” European Journal of Neuroscience, vol. 26, no. 11, pp. 3003–3015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Karunaratne, M. Hargrave, A. Poh, and T. Yamada, “GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord,” Developmental Biology, vol. 249, no. 1, pp. 30–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Lundfald, C. E. Restrepo, S. J. B. Butt et al., “Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord,” European Journal of Neuroscience, vol. 26, no. 11, pp. 2989–3002, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Muroyama, Y. Fujiwara, S. H. Orkin, and D. H. Rowitch, “Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube,” Nature, vol. 438, no. 7066, pp. 360–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Y. Peng, H. Yajima, C. E. Burns et al., “Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord,” Neuron, vol. 53, no. 6, pp. 813–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Smith, M. Hargrave, T. Yamada, C. G. Begley, and M. H. Little, “Coexpression of SCL and GATA3 in the V2 interneurons of the developing mouse spinal cord,” Developmental Dynamics, vol. 224, no. 2, pp. 231–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. J. P. Thaler, S. K. Lee, L. W. Jurata, G. N. Gill, and S. L. Pfaff, “LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions,” Cell, vol. 110, no. 2, pp. 237–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. M. G. Del Barrio, R. Taveira-Marques, Y. Muroyama et al., “A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool,” Development, vol. 134, no. 19, pp. 3427–3436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Yang, T. Tomita, M. Wines-Samuelson et al., “Notch1 signaling influences V2 interneuron and motor neuron development in the spinal cord,” Developmental Neuroscience, vol. 28, no. 1-2, pp. 102–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Li, K. Misra, M. P. Matise, and M. Xiang, “Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10688–10693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Zhou, M. Yamamoto, and J. D. Engel, “GATA2 is required for the generation of V2 interneurons,” Development, vol. 127, no. 17, pp. 3829–3838, 2000. View at Scopus
  70. K. Joshi, S. Lee, B. Lee, J. W. Lee, and S. K. Lee, “LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons,” Neuron, vol. 61, no. 6, pp. 839–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Carletti and F. Rossi, “Neurogenesis in the cerebellum,” Neuroscientist, vol. 14, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Chizhikov and K. J. Millen, “Development and malformations of the cerebellum in mice,” Molecular Genetics and Metabolism, vol. 80, no. 1-2, pp. 54–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Millet, E. Bloch-Gallego, A. Simeone, and R. M. Alvarado-Mallart, “The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts,” Development, vol. 122, no. 12, pp. 3785–3797, 1996. View at Scopus
  74. R. J. T. Wingate and M. E. Hatten, “The role of the rhombic lip in avian cerebellum development,” Development, vol. 126, no. 20, pp. 4395–4404, 1999. View at Scopus
  75. M. Zervas, S. Millet, S. Ahn, and A. L. Joyner, “Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1,” Neuron, vol. 43, no. 3, pp. 345–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. V. V. Chizhikov, A. G. Lindgren, D. S. Currle, M. F. Rose, E. S. Monuki, and K. J. Millen, “The roof plate regulates cerebellar cell-type specification and proliferation,” Development, vol. 133, no. 15, pp. 2793–2804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Ben-Arie, H. J. Bellen, D. L. Armstrong et al., “Math1 is essential for genesis of cerebellar granule neurons,” Nature, vol. 390, no. 6656, pp. 169–172, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Hoshino, S. Nakamura, K. Mori et al., “Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum,” Neuron, vol. 47, no. 2, pp. 201–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Pascual, I. Abasolo, A. M. L. Meur et al., “Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 5193–5198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Sudarov, R. K. Turnbull, E. J. Kim, M. Lebel-Potter, F. Guillemot, and A. L. Joyner, “Ascl1 genetics reveals insights into cerebellum local circuit assembly,” Journal of Neuroscience, vol. 31, no. 30, pp. 11055–11069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. G. S. Sellick, K. T. Barker, I. Stolte-Dijkstra et al., “Mutations in PTF1A cause pancreatic and cerebellar agenesis,” Nature Genetics, vol. 36, no. 12, pp. 1301–1305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. R. MacHold and G. Fishell, “Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors,” Neuron, vol. 48, no. 1, pp. 17–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. V. Y. Wang, M. F. Rose, and H. Y. Zoghbi, “Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum,” Neuron, vol. 48, no. 1, pp. 31–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Englund, T. Kowalczyk, R. A. M. Daza et al., “Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter,” Journal of Neuroscience, vol. 26, no. 36, pp. 9184–9195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Hoshino, “Molecular machinery governing GABAergic neuron specification in the cerebellum,” Cerebellum, vol. 5, no. 3, pp. 193–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Batini, C. Compoint, C. Buisseret-Delmas, H. Daniel, and M. Guegan, “Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry,” Journal of Comparative Neurology, vol. 315, no. 1, pp. 74–84, 1992. View at Scopus
  87. V. Chan-Palay, S. L. Palay, J. T. Brown, and C. Van Itallie, “Sagittal organization of olivocerebellar and reticulocerebellar projections: autoradiographic studies with 35S-methionine,” Experimental Brain Research, vol. 30, no. 4, pp. 561–576, 1977. View at Scopus
  88. C. I. De Zeeuw and A. S. Berrebi, “Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat,” European Journal of Neuroscience, vol. 7, no. 11, pp. 2322–2333, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Leto, B. Carletti, I. M. Williams, L. Magrassi, and F. Rossi, “Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells,” Journal of Neuroscience, vol. 26, no. 45, pp. 11682–11694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Sultan, U. Czubayko, and P. Thier, “Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis,” Journal of Comparative Neurology, vol. 455, no. 2, pp. 139–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Hashimoto and K. Mikoshiba, “Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells,” Journal of Neuroscience, vol. 23, no. 36, pp. 11342–11351, 2003. View at Scopus
  92. L. Mathis, C. Bonnerot, L. Ruelles, and J. F. Nicolas, “Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics,” Development, vol. 124, no. 20, pp. 4089–4104, 1997. View at Scopus
  93. L. Mathis and J. F. Nicolas, “Progressive restriction of cell fates in relation to neuroepithelial cell mingling in the mouse cerebellum,” Developmental Biology, vol. 258, no. 1, pp. 20–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Minaki, T. Nakatani, E. Mizuhara, T. Inoue, and Y. Ono, “Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker,” Gene Expression Patterns, vol. 8, no. 6, pp. 418–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. M. Maricich and K. Herrup, “Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum,” Journal of Neurobiology, vol. 41, no. 2, pp. 281–294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Weisheit, M. Gliem, E. Endl, P. L. Pfeffer, M. Busslinger, and K. Schilling, “Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons,” European Journal of Neuroscience, vol. 24, no. 2, pp. 466–478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Mizuhara, Y. Minaki, T. Nakatani et al., “Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin,” Developmental Biology, vol. 338, no. 2, pp. 202–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Zordan, L. Croci, R. Hawkes, and G. G. Consalez, “Comparative analysis of proneural gene expression in the embryonic cerebellum,” Developmental Dynamics, vol. 237, no. 6, pp. 1726–1735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Grimaldi, C. Parras, F. Guillemot, F. Rossi, and M. Wassef, “Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum,” Developmental Biology, vol. 328, no. 2, pp. 422–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. T. G. Lundell, Q. Zhou, and M. L. Doughty, “Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice,” Developmental Dynamics, vol. 238, no. 12, pp. 3310–3325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Zhao, K. M. Kwan, C. M. Mailloux et al., “LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13182–13186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Wang, W. Harrison, P. A. Overbeek, and H. Zheng, “Transposon mutagenesis with coat color genotyping identifies an essential role for skor2 in sonic hedgehog signaling and cerebellum development,” Development, vol. 138, no. 20, pp. 4487–4497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. M. T. Huard, C. C. Forster, M. L. Carter, P. Sicinski, and M. E. Ross, “Cerebellar histogenesis is disturbed in mice lacking cyclin D2,” Development, vol. 126, no. 9, pp. 1927–1935, 1999. View at Scopus
  104. K. Leto, A. Bartolini, A. di Gregorio et al., “Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation,” Development, vol. 138, no. 16, pp. 3463–3472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Jankovski, “Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations,” European Journal of Neuroscience, vol. 8, no. 11, pp. 2308–2319, 1996. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Carletti, P. Grimaldi, L. Magrassi, and F. Rossi, “Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro,” Journal of Neuroscience, vol. 22, no. 16, pp. 7132–7146, 2002. View at Scopus
  107. K. Leto, A. Bartolini, Y. Yanagawa et al., “Laminar fate and phenotype specification of cerebellar GABAergic interneurons,” Journal of Neuroscience, vol. 29, no. 21, pp. 7079–7091, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. K. K. Osen, “Cytoarchitecture of the cochlear nuclei in the cat,” Journal of Comparative Neurology, vol. 136, no. 4, pp. 453–484, 1969. View at Scopus
  109. D. K. Ryugo and F. H. Willard, “The dorsal cochlear nucleus of the mouse: a light microscopic analysis of neurons that project to the inferior colliculus,” Journal of Comparative Neurology, vol. 242, no. 3, pp. 381–396, 1985. View at Scopus
  110. C. M. Hackney, K. K. Osen, and J. Kolston, “Anatomy of the cochlear nuclear complex of guinea pig,” Anatomy and Embryology, vol. 182, no. 2, pp. 123–149, 1990. View at Scopus
  111. E. T. Pierce, “Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study,” Journal of Comparative Neurology, vol. 131, no. 1, pp. 27–54, 1967. View at Scopus
  112. A. Ivanova and S. Yuasa, “Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus,” Developmental Neuroscience, vol. 20, no. 6, pp. 495–511, 1998. View at Publisher · View at Google Scholar · View at Scopus
  113. A. F. Farago, R. B. Awatramani, and S. M. Dymecki, “Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps,” Neuron, vol. 50, no. 2, pp. 205–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. D. H. Nichols and L. L. Bruce, “Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain,” Developmental Dynamics, vol. 235, no. 2, pp. 285–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Tan and N. M. Le Douarin, “Development of the nuclei and cell migration in the medulla oblongata. Application of the quail-chick chimera system,” Anatomy and Embryology, vol. 183, no. 4, pp. 321–343, 1991. View at Scopus
  116. F. Cambronero and L. Puelles, “Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras,” Journal of Comparative Neurology, vol. 427, no. 4, pp. 522–545, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. K. S. Cramer, S. E. Fraser, and E. W. Rubel, “Embryonic origins of auditory brain-stem nuclei in the chick hindbrain,” Developmental Biology, vol. 224, no. 2, pp. 138–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Fujiyama, M. Yamada, M. Terao et al., “Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1,” Development, vol. 136, no. 12, pp. 2049–2058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Yamada, M. Terao, T. Terashima et al., “Origin of climbing fiber neurons and their developmental dependence on Ptf1a,” Journal of Neuroscience, vol. 27, no. 41, pp. 10924–10934, 2007. View at Publisher · View at Google Scholar · View at Scopus