About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 251308, 15 pages
http://dx.doi.org/10.1155/2013/251308
Research Article

Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

1Sezione di Neuroscienze e Biologia Cellulare, Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, 60020 Ancona, Italy
2Sezione di Scienze Radiologiche, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, 60020 Ancona, Italy

Received 7 September 2012; Revised 26 November 2012; Accepted 4 December 2012

Academic Editor: Giorgio M. Innocenti

Copyright © 2013 Mara Fabri and Gabriele Polonara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Innocenti, T. Manzoni, and G. Spidalieri, “Cutaneous receptive fields of single fibers of the corpus callosum,” Brain Research, vol. 40, no. 2, pp. 507–512, 1972. View at Scopus
  2. G. M. Innocenti, T. Manzoni, and G. Spidalieri, “Patterns of the somesthetic messages transferred through the corpus callosum,” Experimental Brain Research, vol. 19, no. 5, pp. 447–466, 1974. View at Scopus
  3. G. Berlucchi, M. S. Gazzaniga, and G. Rizzolatti, “Microelectrode analysis of transfer of visual information by the corpus callosum,” Archives Italiennes de Biologie, vol. 105, no. 4, pp. 583–596, 1967. View at Scopus
  4. D. H. Hubel and T. N. Wiesel, “Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat,” Journal of Neurophysiology, vol. 30, no. 6, pp. 1561–1573, 1967. View at Scopus
  5. J. P. Guillemot, L. Richer, L. Prevost, M. Ptito, and F. Lepore, “Receptive field properties of somatosensory callosal fibres in the monkey,” Brain Research, vol. 402, no. 2, pp. 293–302, 1987. View at Scopus
  6. D. N. Pandya, E. A. Karol, and D. Heilbronn, “The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey,” Brain Research, vol. 32, no. 1, pp. 31–43, 1971. View at Scopus
  7. D. N. Pandya and B. Seltzer, “The topography of commissural fibers,” in Two Hemispheres-One Brain: Functions of the Corpus Callosum, F. Leporé, M. Ptito, and H. H. Jasper, Eds., pp. 47–73, Alan Liss, New York, NY, USA, 1986.
  8. M. C. de Lacoste, J. B. Kirkpatrick, and E. D. Ross, “Topography of the human corpus callosum,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 578–591, 1985. View at Scopus
  9. S. Caillé, H. C. Sauerwein, A. Schiavetto, J.-G. Villemure, and M. Lassonde, “Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients,” Neurosurgery, vol. 57, no. 1, pp. 50–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Berlucchi, “Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs,” Progress in Brain Research, vol. 144, pp. 79–93, 2004. View at Scopus
  11. M. S. Gazzaniga, “Forty-five years of split-brain research and still going strong,” Nature Reviews of Neuroscience, vol. 6, no. 8, pp. 653–659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Fabri, M. del Pesce, A. Paggi et al., “Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information,” Cognitive Brain Research, vol. 24, no. 1, pp. 73–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Funnell, P. M. Corballis, and M. Gazzaniga, “Cortical and subcortical interhemispheric interactions following partial and complete callosotomy,” Archives of Neurology, vol. 57, no. 2, pp. 185–189, 2000. View at Scopus
  14. M. Fabri, G. Polonara, A. Quattrini, U. Salvolini, M. del Pesce, and T. Manzoni, “Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients,” European Journal of Neuroscience, vol. 11, no. 11, pp. 3983–3994, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fabri, G. Polonara, M. del Pesce, A. Quattrini, U. Salvolini, and T. Manzoni, “Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient,” Journal of Cognitive Neuroscience, vol. 13, no. 8, pp. 1071–1079, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Gazzaniga and H. Freedman, “Observations on visual processes after posterior callosal section,” Neurology, vol. 23, no. 10, pp. 1126–1130, 1973. View at Scopus
  17. S. Clarke, P. Maeder, R. Meuli et al., “Interhemispheric transfer of visual motion information after a posterior callosal lesion: a neuropsychological and fMRI study,” Experimental Brain Research, vol. 132, no. 1, pp. 127–133, 2000. View at Scopus
  18. M. Sugishita, K. Otomo, K. Yamazaki, H. Shimizu, M. Yoshioka, and A. Shinohara, “Dichotic listening in patients with partial section of the corpus callosum,” Brain, vol. 118, no. 2, pp. 417–427, 1995.
  19. S. Pollmann, M. Maertens, D. Y. von Cramon, J. Lepsien, and K. Hugdahl, “Dichotic listening in patients with splenial and nonsplenial callosal lesions,” Neuropsychology, vol. 16, no. 1, pp. 56–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Tettamanti, E. Paulesu, P. Scifo et al., “Interhemispheric transmission of visuomotor information in humans: fMRI evidence,” Journal of Neurophysiology, vol. 88, no. 2, pp. 1051–1058, 2002. View at Scopus
  21. K. Omura, T. Tsukamoto, Y. Kotani, Y. Ohgami, M. Minami, and Y. Inoue, “Different mechanisms involved in interhemispheric transfer of visuomotor information,” NeuroReport, vol. 15, no. 18, pp. 2707–2711, 2004. View at Scopus
  22. B. Weber, V. Treyer, N. Oberholzer et al., “Attention and interhemispheric transfer: a behavioral and fMRI study,” Journal of Cognitive Neuroscience, vol. 17, no. 1, pp. 113–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. L. Mazerolle, R. C. N. D’Arcy, X. Song, and S. D. Beyea, “Detecting fMRI activation in white matter: interhemispheric transfer across the corpus callosum,” BioMed Central Neuroscience, vol. 9, pp. 84–94, 2008.
  24. K. Mosier and I. Bereznaya, “Parallel cortical networks for volitional control of swallowing in humans,” Experimental Brain Research, vol. 140, no. 3, pp. 280–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Zarei, H. Johansen-Berg, S. Smith, O. Ciccarelli, A. J. Thompson, and P. M. Matthews, “Functional anatomy of interhemispheric cortical connections in the human brain,” Journal of Anatomy, vol. 209, no. 3, pp. 311–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. U. Meyer, S. Roricht, H. Grafin von Einsiedel, F. Kruggel, and A. Weindl, “Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal human and patients with abonormalities of the corpus callosum,” Brain, vol. 118, no. 2, pp. 429–440, 1995. View at Scopus
  27. A. Stancak Jr., C. H. Lucking, and R. Kristeva-Feige, “Lateralization of movement related potentials and the size of corpus callosum,” NeuroReport, vol. 11, no. 2, pp. 329–332, 2000.
  28. L. Bonzano, A. Tacchino, L. Roccatagliata, G. Abbruzzese, G. L. Mancardi, and M. Bove, “Callosal contributions to simultaneous bimanual finger movements,” Journal of Neuroscience, vol. 28, no. 12, pp. 3227–3233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Fabri, G. Polonara, G. Mascioli, U. Salvolini, and T. Manzoni, “Topographical organization of human corpus callosum: an fMRI mapping study,” Brain Research, vol. 1370, pp. 99–111, 2011.
  30. R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, vol. 9, no. 1, pp. 97–113, 1971. View at Scopus
  31. S.-G. Kim and K. Urgubil, “Functional magnetic resonance imaging of the human brain,” Journal of Neuroscience Methods, vol. 15, pp. 3821–3839, 1997.
  32. R. Goebel, F. Esposito, and E. Formisano, “Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis,” Human Brain Mapping, vol. 27, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, Georg Thieme, Stuttgart, Germany, 1988.
  34. M. Fabri, G. Polonara, G. Mascioli et al., “Cortical representation and lateralization of taste in man,” Proceedings of Physiological Societies, vol. 78P, 2005.
  35. G. Polonara, M. Fabri, T. Manzoni, and U. Salvolini, “Localization of the first (SI) and second (SII) somatic sensory areas in human cerebral cortex with fMRI,” American Journal of Neuroradiology, vol. 20, no. 2, pp. 199–205, 1999. View at Scopus
  36. M. Fabri, G. Polonara, U. Salvolini, and T. Manzoni, “Bilateral cortical representation of the trunk midline in human first somatic sensory area,” Human Brain Mapping, vol. 25, no. 3, pp. 287–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Fabri, G. Polonara, G. Mascioli, U. Salvolini, and T. Manzoni, “Bilateral representation of peripheral touch receptors in the second somatosensory cortex: a human functional study,” in Proceedings of the 36th International Congress of Physiological Sciences, Kyoto, Japan, August 2009.
  38. J. S. Shimony, H. Burton, A. A. Epstein, D. G. McLaren, S. W. Sun, and A. Z. Snyder, “Diffusion tensor imaging reveals white matter reorganization in early blind humans,” Cerebral Cortex, vol. 16, no. 11, pp. 1653–1661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Polonara, M. Fabri, G. Mascioli, A. Paggi, T. Manzoni, and U. Salvolini, “Interhemispheric connectivity in patients with callosal resection described and quantified using diffusion tensor imaging,” in Proceedings of the 32nd European Society for NeuroRadiology Annual Meeting, Genoa, Italy, September 2007.
  40. F. B. Pizzini, G. Mascioli, A. Beltramello et al., “Diffusion tensor tracking of callosal fibers several years after callosotomy,” Brain Research, vol. 1312, pp. 10–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. U. Salvolini, G. Polonara, G. Mascioli, M. Fabri, and T. Manzoni, “Organisation topographique du corps calleux chez l'homme. Etude cartographique en imagerie par résonance magnétique fonctionnelle (IRMf),” Bulletin de l’Academie Nationale de Médecine, vol. 194, no. 3, pp. 17–31, 2010.
  42. B. T. Volpe, J. J. Sidtis, J. D. Holtzman, D. H. Wilson, and M. S. Gazzaniga, “Cortical mechanisms involved in praxis: observations following partial and complete section of the corpus callosum in man,” Neurology, vol. 32, no. 6, pp. 645–650, 1982. View at Scopus
  43. S. Bentin, A. Sahar, and M. Moscovitch, “Intermanual information transfer in patients with lesions in the trunk of the corpus callosum,” Neuropsychologia, vol. 22, no. 5, pp. 601–611, 1984.
  44. G. L. Risse, J. Gates, G. Lund, R. C. Maxwell, and A. Rubens, “Interhemispheric transfer in patients with incomplete section of the corpus callosum,” Archives of Neurology, vol. 46, no. 4, pp. 437–443, 1989.
  45. H. S. Levin, A. J. Mattson, M. Levander et al., “Effects of transcallosal surgery on interhemispheric transfer of information,” Surgical Neurology, vol. 40, no. 1, pp. 65–74, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. D. H. Geschwind, M. Iacoboni, M. S. Mega, D. W. Zaidel, T. Cloughesy, and E. Zaidel, “Alien hand syndrome: interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum,” Neurology, vol. 45, no. 4, pp. 802–808, 1995. View at Scopus
  47. R. C. N. D'Arcy, A. Hamilton, M. Jarmasz, S. Sullivan, and G. Stroink, “Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 55, no. 4, pp. 952–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Kida, F. Hyder, and K. L. Behar, “Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 5, pp. 585–591, 2001. View at Scopus
  49. P. J. Magistretti, “Brain energy metabolism,” in Fundamental Neuroscience, M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire, Eds., pp. 339–360, Academic Press, San Diego, Calif, USA, 2003.
  50. M. Iacoboni, “Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI,” Neuropsychologia, vol. 44, no. 13, pp. 2691–2699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman, and F. Hyder, “Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10765–10770, 2002.
  52. Y. Nir, I. Dinstein, R. Malach, and D. J. Heeger, “BOLD and spiking activity,” Nature Neuroscience, vol. 11, no. 5, pp. 523–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. J. Rossi, “Another BOLD role for astrocytes: coupling blood flow to neural activity,” Nature Neuroscience, vol. 9, no. 2, pp. 159–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Jakovcevic and D. R. Harder, “Role of astrocytes in matching blood flow to neuronal activity,” Current Topics in Developmental Biology, vol. 79, pp. 75–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Takano, G. F. Tian, W. Peng et al., “Astrocyte-mediated control of cerebral blood flow,” Nature Neuroscience, vol. 9, no. 2, pp. 260–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. J. Rabi, C. Madhavi, B. Antonisamy, and R. Koshi, “Quantitative analysis of the human corpus callosum under light microscopy,” European Journal of Anatomy, vol. 11, no. 2, pp. 95–100, 2007. View at Scopus
  57. S. F. Witelson, “Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study,” Brain, vol. 112, no. 3, pp. 799–835, 1989. View at Scopus
  58. S. Hofer and J. Frahm, “Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging,” NeuroImage, vol. 32, no. 3, pp. 989–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. P. Chao, K. H. Cho, C. H. Yeh, K. H. Chou, J. H. Chen, and C. P. Lin, “Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography,” Human Brain Mapping, vol. 30, no. 10, pp. 3172–3187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Abe, Y. Masutani, S. Aoki et al., “Topography of the human corpus callosum using diffusion tensor tractography,” Journal of Computer Assisted Tomography, vol. 28, no. 4, pp. 533–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Huang, J. Zhang, H. Jiang et al., “DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum,” NeuroImage, vol. 26, no. 1, pp. 195–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Wahl, B. Lauterbach-Soon, E. Hattingen et al., “Human motor corpus callosum: topography, somatotopy, and link between microstructure and function,” Journal of Neuroscience, vol. 27, no. 45, pp. 12132–12138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. R. F. Dougherty, M. Ben-Shachar, R. Bammer, A. A. Brewer, and B. A. Wandell, “Functional organization of human occipital-callosal fiber tracts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7350–7355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. H. W. Gordon, J. E. Bogen, and R. W. Sperry, “Absence of deconnexion syndrome in two patients with partial section of the neocommissures,” Brain, vol. 94, no. 2, pp. 327–336, 1971. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Geffen, J. Nilsson, K. Quinn, and E. L. Teng, “The effect of lesions of the corpus callosum on finger localization,” Neuropsychologia, vol. 23, no. 4, pp. 497–514, 1985. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Aglioti, G. Tassinari, M. C. Corballis, and G. Berlucchi, “Incomplete gustatory lateralization as shown by analysis of taste discrimination after callosotomy,” Journal of Cognitive Neuroscience, vol. 12, no. 2, pp. 238–245, 2000. View at Scopus
  67. S. M. Aglioti, G. Tassinari, M. Fabri et al., “Taste laterality in the split brain,” European Journal of Neuroscience, vol. 13, no. 1, pp. 195–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. R. Gawryluk, K. D. Brewer, S. D. Beyea, and R. C. N. D'Arcy, “Optimizing the detection of white matter fMRI using asymmetric spin echo spiral,” NeuroImage, vol. 45, no. 1, pp. 83–88, 2009. View at Publisher · View at Google Scholar · View at Scopus