About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 258582, 9 pages
http://dx.doi.org/10.1155/2013/258582
Review Article

Influence of Inflammation on Poststroke Plasticity

1Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
2Warsaw School of Social Science and Humanities, 19 Chodakowska Street, 03-815 Warsaw, Poland

Received 27 November 2012; Accepted 11 January 2013

Academic Editor: Michael Stewart

Copyright © 2013 Monika Liguz-Lecznar and Malgorzata Kossut. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends in Neurosciences, vol. 22, no. 9, pp. 391–397, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 399–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Candelario-Jalil, “Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics,” Current Opinion in Investigational Drugs, vol. 10, no. 7, pp. 644–654, 2009. View at Scopus
  4. B. B. Johansson, “Brain plasticity and stroke rehabilitation: the Willis lecture,” Stroke, vol. 31, no. 1, pp. 223–230, 2000. View at Scopus
  5. S. T. Carmichael, “Plasticity of cortical projections after stroke,” Neuroscientist, vol. 9, no. 1, pp. 64–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. W. Duncan, H. S. Jorgensen, and D. T. Wade, “Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice,” Stroke, vol. 31, no. 6, pp. 1429–1438, 2000. View at Scopus
  7. P. W. Duncan, “Stroke recovery and rehabilitation research,” Journal of Rehabilitation Research and Development, vol. 39, pp. ix–xi, 2002.
  8. S. Studenski, P. W. Duncan, S. Perera, D. Reker, S. M. Lai, and L. Richards, “Daily functioning and quality of life in a randomized controlled trial of therapeutic exercise for subacute stroke survivors,” Stroke, vol. 36, no. 8, pp. 1764–1770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Jablonka, K. Burnat, O. W. Witte, and M. Kossut, “Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization,” Neuroscience, vol. 165, no. 1, pp. 90–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Wieloch and K. Nikolich, “Mechanisms of neural plasticity following brain injury,” Current Opinion in Neurobiology, vol. 16, no. 3, pp. 258–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Nudo, B. M. Wise, F. SiFuentes, and G. W. Milliken, “Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct,” Science, vol. 272, no. 5269, pp. 1791–1794, 1996. View at Scopus
  12. C. M. Bütefisch, “Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke,” Neuroscientist, vol. 10, no. 2, pp. 163–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. H. Murphy and D. Corbett, “Plasticity during stroke recovery: from synapse to behaviour,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 861–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. T. Carmichael, L. Wei, C. M. Rovainen, and T. A. Woolsey, “New patterns of intracortical projections after focal cortical stroke,” Neurobiology of Disease, vol. 8, no. 5, pp. 910–922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Li, J. J. Overman, D. Katsman et al., “An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke,” Nature Neuroscience, vol. 13, no. 12, pp. 1496–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. T. Carmichael, “Rodent models of focal stroke: size, mechanism, and purpose,” NeuroRx, vol. 2, no. 3, pp. 396–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. E. Brown, C. Wong, and T. H. Murphy, “Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke,” Stroke, vol. 39, no. 4, pp. 1286–1291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Cramer, “Stroke recovery: how the computer reprograms itself. Neuronal plasticity: the key to stroke recovery. Kananskis, Alberta, Canada, 19-22 March 2000,” Molecular Medicine Today, vol. 6, no. 8, pp. 301–303, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Mostany, T. G. Chowdhury, D. G. Johnston, S. A. Portonovo, S. T. Carmichael, and C. Portera-Cailliau, “Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex,” Journal of Neuroscience, vol. 30, no. 42, pp. 14116–14126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. E. Brown, K. Aminoltejari, H. Erb, I. R. Winship, and T. H. Murphy, “In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites,” Journal of Neuroscience, vol. 29, no. 6, pp. 1719–1734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. D. Jones, I. M. Donaldson, and P. J. Parkin, “Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction,” Brain, vol. 112, no. 1, pp. 113–132, 1989. View at Scopus
  22. O. W. Witte, “Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training,” Current Opinion in Neurology, vol. 11, no. 6, pp. 655–662, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. T. A. Jones, C. J. Chu, L. A. Grande, and A. D. Gregory, “Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats,” Journal of Neuroscience, vol. 19, no. 22, pp. 10153–10163, 1999. View at Scopus
  24. S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. P. van Meer, W. M. Otte, K. van der Marel et al., “Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity,” The Journal of Neuroscience, vol. 32, pp. 4495–4507, 2012.
  26. A. Sterr, Shan Shen, A. J. Szameitat, and K. A. Herron, “The role of corticospinal tract damage in chronic motor recovery and neurorehabilitation: a pilot study,” Neurorehabilitation and Neural Repair, vol. 24, no. 5, pp. 413–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Qiu, W. G. Darling, R. J. Morecraft, C. C. Ni, J. Rajendra, and A. J. Butler, “White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke,” Neurorehabilitation and Neural Repair, vol. 25, no. 3, pp. 275–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Borich, C. Mang, and L. A. Boyd, “Both projection and commissural pathways are disrupted in individuals with chronic stroke: investigating microstructural white matter correlates of motor recovery,” BMC Neuroscience, vol. 13, p. 107, 2012.
  29. G. Schlaug, S. Marchina, and A. Norton, “Evidence for plasticity in white-matter tracts of patients with chronic broca's aphasia undergoing intense intonation-based speech therapy,” Annals of the New York Academy of Sciences, vol. 1169, pp. 385–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. G. Bush, N. Puvanachandra, C. H. Horner et al., “Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice,” Neuron, vol. 23, no. 2, pp. 297–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Karetko-Sysa, J. Skangiel-Kramska, and D. Nowicka, “Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death,” Experimental Neurology, vol. 231, no. 1, pp. 113–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. D. Dietrich, O. Alonso, R. Busto, and M. D. Ginsberg, “Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats,” Journal of Neurotrauma, vol. 11, no. 6, pp. 629–640, 1994. View at Scopus
  33. M. J. Passineau, W. Zhao, R. Busto et al., “Chronic metabolic sequelae of traumatic brain injury: prolonged suppression of somatosensory activation,” American Journal of Physiology, vol. 279, no. 3, pp. H924–H931, 2000. View at Scopus
  34. J. Jablonka and M. Kossut, “Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input,” Acta Neurobiologiae Experimentalis, vol. 66, no. 3, pp. 261–266, 2006. View at Scopus
  35. J. A. Jablonka, M. Kossut, O. W. Witte, and M. Liguz-Lecznar, “Experience-dependent brain plasticity after stroke: effect of ibuprofen and poststroke delay,” European Journal of Neuroscience, vol. 36, pp. 2632–2639, 2012.
  36. F. Greifzu, S. Schmidt, K. F. Schmidt, K. Kreikemeier, and O. W. Witte, “Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 15450–15455, 2011.
  37. S. C. Cramer and R. J. Seitz, “Imaging functional recovery from stroke,” Handbook of Clinical Neurology, vol. 94, pp. 1097–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Que, K. Schiene, O. W. Witte, and K. Zilles, “Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain,” Neuroscience Letters, vol. 273, no. 2, pp. 77–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Neumann-Haefelin and O. W. Witte, “Periinfarct and remote excitability changes after transient middle cerebral artery occlusion,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 1, pp. 45–52, 2000. View at Scopus
  40. G. Hagemann, C. Redecker, T. Neumann-Haefelin, H. J. Freund, and O. W. Witte, “Increased long-term potentiation in the surround of experimentally induced focal cortical infarction,” Annals of Neurology, vol. 44, no. 2, pp. 255–258, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. K. A. Hossmann, “The hypoxic brain: insights from ischemia research,” Advances in Experimental Medicine and Biology, vol. 474, pp. 155–169, 2000. View at Scopus
  42. R. Hata, K. Maeda, D. Hermann, G. Mies, and K. A. Hossmann, “Evolution of brain infarction after transient focal cerebral ischemia in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 937–946, 2000. View at Scopus
  43. J. L. Cheatwood, A. J. Emerick, M. E. Schwab, and G. L. Kartje, “Nogo-A expression after focal ischemic stroke in the adult rat,” Stroke, vol. 39, no. 7, pp. 2091–2098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Li and S. T. Carmichael, “Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke,” Neurobiology of Disease, vol. 23, no. 2, pp. 362–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Kaczmarek, “MMP-9 inhibitors in the brain: can old bullets shoot new targets?” Current Pharmaceutical Designs, vol. 19, no. 6, pp. 1085–1089, 2012.
  46. A. Cybulska-Klosowicz, M. Liguz-Lecznar, D. Nowicka, M. Ziemka-Nalecz, M. Kossut, and J. Skangiel-Kramska, “Matrix metalloproteinase inhibition counteracts impairment of cortical experience-dependent plasticity after photothrombotic stroke,” European Journal of Neuroscience, vol. 33, pp. 2238–2246, 2011.
  47. J. Kriz, “Inflammation in ischemic brain injury: timing is important,” Critical Reviews in Neurobiology, vol. 18, no. 1-2, pp. 145–157, 2006. View at Scopus
  48. R. Macrez, C. Ali, O. Toutirais et al., “Stroke and the immune system: from pathophysiology to new therapeutic strategies,” The Lancet Neurology, vol. 10, pp. 471–480, 2011.
  49. Q. Wang, X. N. Tang, and M. A. Yenari, “The inflammatory response in stroke,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 53–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Liebigt, N. Schlegel, J. Oberland, O. W. Witte, C. Redecker, and S. Keiner, “Effects of rehabilitative training and anti-inflammatory treatment on functional recovery and cellular reorganization following stroke,” Experimental Neurology, vol. 233, pp. 776–782, 2012.
  51. N. Morimoto, M. Shimazawa, T. Yamashima, H. Nagai, and H. Hara, “Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage,” Brain Research, vol. 1044, no. 1, pp. 8–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. C. Weng and J. Kriz, “Differential neuroprotective effects of a minocycline-based drug cocktail in transient and permanent focal cerebral ischemia,” Experimental Neurology, vol. 204, no. 1, pp. 433–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. H. C. A. Emsley, C. J. Smith, P. J. Tyrrell, and S. J. Hopkins, “Inflammation in acute ischemic stroke and its relevance to stroke critical care,” Neurocritical Care, vol. 9, no. 1, pp. 125–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. V. Padma Srivastava, A. Bhasin, R. Bhatia et al., “Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial,” Neurology India, vol. 60, pp. 23–28, 2012.
  55. S. C. Fagan, L. E. Cronic, and D. C. Hess, “Minocycline development for acute ischemic stroke,” Translational Stroke Research, vol. 2, no. 2, pp. 202–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. C. Fagan, J. L. Waller, F. T. Nichols et al., “Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study,” Stroke, vol. 41, no. 10, pp. 2283–2287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Hasegawa, H. Suzuki, T. Sozen, W. Rolland, and J. H. Zhang, “Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats,” Stroke, vol. 41, no. 2, pp. 368–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. T. V. Arumugam, S. C. Tang, J. D. Lathia et al., “Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 35, pp. 14104–14109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. V. Arumugam, T. M. Woodruff, J. D. Lathia, P. K. Selvaraj, M. P. Mattson, and S. M. Taylor, “Neuroprotection in stroke by complement inhibition and immunoglobulin therapy,” Neuroscience, vol. 158, no. 3, pp. 1074–1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. N. B. Beamer, B. M. Coull, W. M. Clark, J. S. Hazel, and J. R. Silberger, “Interleukin-6 and interleukin-1 receptor antagonist in acute stroke,” Annals of Neurology, vol. 37, no. 6, pp. 800–804, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Vila, J. Castillo, A. Dávalos, and A. Chamorro, “Proinflammatory cytokines and early neurological worsening in ischemic stroke,” Stroke, vol. 31, no. 10, pp. 2325–2329, 2000. View at Scopus
  62. F. C. Barone, B. Arvin, R. F. White et al., “Tumor necrosis factor-α: a mediator of focal ischemic brain injury,” Stroke, vol. 28, no. 6, pp. 1233–1244, 1997. View at Scopus
  63. A. Denes, E. Pinteaux, N. J. Rothwell, and S. M. Allan, “Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target,” Cerebrovascular Diseases, vol. 32, pp. 517–527, 2011.
  64. S. A. Loddick and N. J. Rothwell, “Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 5, pp. 932–940, 1996. View at Scopus
  65. Z. S. Vexler, X. N. Tang, and M. A. Yenari, “Inflammation in adult and neonatal stroke,” Clinical Neuroscience Research, vol. 6, no. 5, pp. 293–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. D. Greenhalgh, J. Galea, A. Dénes, P. J. Tyrrell, and N. J. Rothwell, “Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection,” British Journal of Pharmacology, vol. 160, no. 1, pp. 153–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. M. Lucas, N. J. Rothwell, and R. M. Gibson, “The role of inflammation in CNS injury and disease,” British Journal of Pharmacology, vol. 147, no. 1, pp. S232–S240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Martin-Villalba, M. Hahne, S. Kleber et al., “Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke,” Cell Death and Differentiation, vol. 8, no. 7, pp. 679–686, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. A. L. Sirén, R. McCarron, L. Wang et al., “Proinflammatory cytokine expression contributes to brain injury provoked by chronic monocyte activation,” Molecular Medicine, vol. 7, no. 4, pp. 219–229, 2001. View at Scopus
  70. S. Suzuki, K. Tanaka, and N. Suzuki, “Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 464–479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. J. Smith, H. C. A. Emsley, C. M. Gavin et al., “Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome,” BMC Neurology, vol. 4, article 2, 2004. View at Publisher · View at Google Scholar
  72. U. Waje-Andreassen, J. Kråkenes, E. Ulvestad et al., “IL-6: an early marker for outcome in acute ischemic stroke,” Acta Neurologica Scandinavica, vol. 111, no. 6, pp. 360–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Krams, K. R. Lees, W. Hacke, A. P. Grieve, J. M. Orgogozo, and G. A. Ford, “Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke,” Stroke, vol. 34, no. 11, pp. 2543–2548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. A. J. Bruce, W. Boling, M. S. Kindy et al., “Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors,” Nature Medicine, vol. 2, no. 7, pp. 788–794, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Nawashiro, D. Martin, and J. M. Hallenbeck, “Neuroprotective effects of TNF binding protein in focal cerebral ischemia,” Brain Research, vol. 778, no. 2, pp. 265–271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  76. W. Zhang and D. Stanimirovic, “Current and future therapeutic strategies to target inflammation in stroke,” Curr Drug Targets Inflamm Allergy, vol. 1, no. 2, pp. 151–166, 2002. View at Scopus
  77. T. Yamashita, K. Sawamoto, S. Suzuki et al., “Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons,” Journal of Neurochemistry, vol. 94, no. 2, pp. 459–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Xu, S. C. Fagan, J. L. Waller et al., “Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats,” BMC Neurology, vol. 4, article 7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Figueroa, L. E. Gordon, P. W. Feldhoff, and H. A. Lassiter, “The administration of cobra venom factor reduces post-ischemic cerebral injury in adult and neonatal rats,” Neuroscience Letters, vol. 380, no. 1-2, pp. 48–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. U. S. Vasthare, F. C. Barone, H. M. Sarau et al., “Complement depletion improves neurological function in cerebral ischemia,” Brain Research Bulletin, vol. 45, no. 4, pp. 413–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Heydenreich, M. W. Nolte, E. Gob et al., “C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms,” Stroke, vol. 43, pp. 2457–2467, 2012.
  82. A. F. Ducruet, B. G. Hassid, W. J. MacK et al., “C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 5, pp. 1048–1058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Mocco, W. J. Mack, A. F. Ducruet et al., “Complement component C3 mediates inflammatory injury following focal cerebral ischemia,” Circulation Research, vol. 99, no. 2, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Jiang, M. Chopp, and S. Chahwala, “Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat,” Brain Research, vol. 788, no. 1-2, pp. 25–34, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Jiang, M. Moyle, H. R. Soule, W. E. Rote, and M. Chopp, “Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats,” Annals of Neurology, vol. 38, no. 6, pp. 935–942, 1995. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Czech, W. Pfeilschifter, N. Mazaheri-Omrani et al., “The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia,” Biochemical and Biophysical Research Communications, vol. 389, no. 2, pp. 251–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Wei, M. Yemisci, H. H. Kim et al., “Fingolimod provides long-term protection in rodent models of cerebral ischemia,” Annals of Neurology, vol. 69, pp. 119–129, 2011.
  88. C. Iadecola, K. Niwa, S. Nogawa et al., “Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1294–1299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Boutin, R. A. LeFeuvre, R. Horai, M. Asano, Y. Iwakura, and N. J. Rothwell, “Role of IL-1α and IL-1β in ischemic brain damage,” Journal of Neuroscience, vol. 21, no. 15, pp. 5528–5534, 2001. View at Scopus
  90. O. Touzani, H. Boutin, R. Lefeuvre et al., “Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor,” Journal of Neuroscience, vol. 22, no. 1, pp. 38–43, 2002. View at Scopus
  91. A. Basu, J. Lazovic, J. K. Krady et al., “Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 1, pp. 17–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Y. Yang, C. Gong, Z. Qin, W. Ye, Y. Mao, and A. L. Bertz, “Inhibition of TNFα attenuates infarct volume and ICAM-1 expression in ischemic mouse brain,” NeuroReport, vol. 9, no. 9, pp. 2131–2134, 1998. View at Scopus
  93. M. Yepes, S. A. N. Brown, E. G. Moore, E. P. Smith, D. A. Lawrence, and J. A. Winkles, “A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia,” American Journal of Pathology, vol. 166, no. 2, pp. 511–520, 2005. View at Scopus
  94. R. K. Sumbria, R. J. Boado, and W. M. Pardridge, “Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 10, pp. 1933–1938, 2012. View at Publisher · View at Google Scholar