About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 432057, 10 pages
http://dx.doi.org/10.1155/2013/432057
Review Article

Ubiquitination of Neurotransmitter Receptors and Postsynaptic Scaffolding Proteins

Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA

Received 28 September 2012; Accepted 26 December 2012

Academic Editor: Michael Stewart

Copyright © 2013 Amy W. Lin and Heng-Ye Man. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Williams and K. Herrup, “The control of neuron number,” Annual Review of Neuroscience, vol. 11, pp. 423–453, 1988. View at Scopus
  2. J. J. Yi and M. D. Ehlers, “Emerging roles for ubiquitin and protein degradation in neuronal function,” Pharmacological Reviews, vol. 59, no. 1, pp. 14–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Mabb and M. D. Ehlers, “Ubiquitination in postsynaptic function and plasticity,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 179–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. L. Haas and I. A. Rose, “The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis,” Journal of Biological Chemistry, vol. 257, no. 17, pp. 10329–10337, 1982. View at Scopus
  5. A. Hershko, H. Heller, S. Elias, and A. Ciechanover, “Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown,” Journal of Biological Chemistry, vol. 258, no. 13, pp. 8206–8214, 1983. View at Scopus
  6. C. M. Pickart, “Mechanisms underlying ubiquitination,” Annual Review of Biochemistry, vol. 70, pp. 503–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Ardley and P. A. Robinson, “E3 ubiquitin ligases,” Essays in Biochemistry, vol. 41, pp. 15–30, 2005. View at Scopus
  8. D. Rotin and S. Kumar, “Physiological functions of the HECT family of ubiquitin ligases,” Nature Reviews Molecular Cell Biology, vol. 10, no. 6, pp. 398–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. D. Wilkinson, “Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome,” Seminars in Cell and Developmental Biology, vol. 11, no. 3, pp. 141–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Komander, M. J. Clague, and S. Urbé, “Breaking the chains: structure and function of the deubiquitinases,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 550–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Husnjak and I. Dikic, “Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions,” Annual Review of Biochemistry, vol. 81, pp. 291–322, 2012. View at Publisher · View at Google Scholar
  12. F. Ikeda and I. Dikic, “Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: beyond the Usual Suspects' Review Series,” EMBO Reports, vol. 9, no. 6, pp. 536–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Ehlers, “Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system,” Nature Neuroscience, vol. 6, no. 3, pp. 231–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. O. M. Schlüter, W. Xu, and R. C. Malenka, “Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function,” Neuron, vol. 51, no. 1, pp. 99–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Colledge, E. M. Snyder, R. A. Crozier et al., “Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression,” Neuron, vol. 40, no. 3, pp. 595–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Bingol and E. M. Schuman, “A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis,” Neuropharmacology, vol. 47, no. 5, pp. 755–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Bianchetta, T. T. Lam, S. N. Jones, and M. A. Morabito, “Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons,” The Journal of Neuroscience, vol. 31, pp. 12029–12035, 2011. View at Publisher · View at Google Scholar
  18. S. H. Lee, L. Liu, Y. T. Wang, and M. Sheng, “Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD,” Neuron, vol. 36, no. 4, pp. 661–674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Dong, R. J. O'Brien, E. T. Fung, A. A. Lanahan, P. F. Worley, and R. L. Huganir, “GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors,” Nature, vol. 386, no. 6622, pp. 279–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Guo and Y. Wang, “Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2,” Neuroscience, vol. 145, no. 1, pp. 100–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sheng and E. Kim, “The Shank family of scaffold proteins,” Journal of Cell Science, vol. 113, no. 11, pp. 1851–1856, 2000. View at Scopus
  22. A. Y. Hung, C. C. Sung, I. L. Brito, and M. Sheng, “Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons,” PloS ONE, vol. 5, no. 3, Article ID e9842, 2010. View at Scopus
  23. M. A. Bangash, J. M. Park, T. Melnikova et al., “Enhanced polyubiquitination of shank3 and NMDA receptor in a mouse model of autism,” Cell, vol. 145, no. 5, pp. 758–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Xia, X. Zhang, J. Staudinger, and R. L. Huganir, “Clustering of AMPA receptors by the synaptic PD domain-containing protein PICK1,” Neuron, vol. 22, no. 1, pp. 179–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Madsen, T. Beuming, M. Y. Niv et al., “Molecular determinants for the complex binding specificity of the PDZ domain in PICK1,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20539–20548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Joch, A. R. Ase, C. X. Q. Chen et al., “Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels,” Molecular Biology of the Cell, vol. 18, no. 8, pp. 3105–3118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. T. S. Pak, S. Yang, S. Rudolph-Correia, E. Kim, and M. Sheng, “Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP,” Neuron, vol. 31, no. 2, pp. 289–303, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. T. S. Pak and M. Sheng, “Targeted protein degradation and synapse remodeling by an inducible protein kinase,” Science, vol. 302, no. 5649, pp. 1368–1373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. X. L. Ang, D. P. Seeburg, M. Sheng, and J. W. Harper, “Regulation of postsynaptic RapGAP SPAR by polo-like kinase 2 and the SCFβ-TRCP ubiquitin ligase in hippocampal neurons,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29424–29432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. González-González, N. García-Tardón, C. Giménez, and F. Zafra, “PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster,” Glia, vol. 56, no. 9, pp. 963–974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Sheldon, M. I. González, E. N. Krizman-Genda, B. T. S. Susarla, and M. B. Robinson, “Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1,” Neurochemistry International, vol. 53, no. 6–8, pp. 296–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Garcia-Tardon, I. M. Gonzalez-Gonzalez, J. Martinez-Villarreal, E. Fernandez-Sanchez, C. Gimenez, et al., “Protein kinase C, (PKC)-promoted endocytosis of glutamate transporter GLT-1 requires ubiquitin ligase Nedd4-2-dependent ubiquitination but not phosphorylation,” The Journal of Biological Chemistry, vol. 287, pp. 19177–19187, 2012. View at Publisher · View at Google Scholar
  33. J. Martinez-Villarreal, N. Garcia Tardon, I. Ibanez, C. Gimenez, and F. Zafra, “Cell surface turnover of the glutamate transporter GLT-1 is mediated by ubiquitination/deubiquitination,” Glia, vol. 60, pp. 1356–1365, 2012. View at Publisher · View at Google Scholar
  34. K. Ishikawa, S. R. Nash, A. Nishimune, A. Neki, S. Kaneko, and S. Nakanishi, “Competitive interaction of seven in absentia homolog-1A and Ca2+/calmodulin with the cytoplasmic tail of group 1 metabotropic glutamate receptors,” Genes to Cells, vol. 4, no. 7, pp. 381–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Moriyoshi, K. Iijima, H. Fujii, H. Ito, Y. Cho, and S. Nakanishi, “Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8614–8619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Rezvani, K. Baalman, Y. Teng, M. P. Mee, S. P. Dawson, et al., “Proteasomal degradation of the metabotropic glutamate receptor 1alpha is mediated by Homer-3 via the proteasomal S8 ATPase: signal transduction and synaptic transmission,” Journal of Neurochemistry, vol. 122, pp. 24–37, 2012. View at Publisher · View at Google Scholar
  37. G. D. Salinas, L. A. C. Blair, L. A. Needleman et al., “Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway,” Journal of Biological Chemistry, vol. 281, no. 52, pp. 40164–40173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Marshall, L. A. C. Blair, and J. D. Singer, “BTB-kelch proteins and ubiquitination of kainate receptors,” Advances in Experimental Medicine and Biology, vol. 717, pp. 115–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Martin, A. Nishimune, J. R. Mellor, and J. M. Henley, “SUMOylation regulates kainate-receptor-mediated synaptic transmission,” Nature, vol. 447, no. 7142, pp. 321–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. E. Chamberlain, I. M. Gonzalez-Gonzalez, K. A. Wilkinson, et al., “SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity,” Nature Neuroscience, vol. 15, pp. 845–852, 2012. View at Publisher · View at Google Scholar
  41. K. A. Wilkinson, F. Konopacki, and J. M. Henley, “Modification and movement: phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors,” Communicative & Integrative Biology, vol. 5, pp. 223–226, 2012. View at Publisher · View at Google Scholar
  42. F. A. Konopacki, N. Jaafari, D. L. Rocca, K. A. Wilkinson, S. Chamberlain, et al., “Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 19772–19777, 2011. View at Publisher · View at Google Scholar
  43. Q. J. Zhu, Y. Xu, C. P. Du, and X. Y. Hou, “SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation,” FEBS Letters, vol. 586, pp. 1259–1264, 2012. View at Publisher · View at Google Scholar
  44. A. Kato, N. Rouach, R. A. Nicoll, and D. S. Bredt, “Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5600–5605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. R. F. Nelson, K. A. Glenn, V. M. Miller, H. Wen, and H. L. Paulson, “A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 20242–20251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Jurd, C. Thornton, J. Wang et al., “Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner,” Journal of Biological Chemistry, vol. 283, no. 1, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Burbea, L. Dreier, J. S. Dittman, M. E. Grunwald, and J. M. Kaplan, “Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans,” Neuron, vol. 35, no. 1, pp. 107–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Juo and J. M. Kaplan, “The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans,” Current Biology, vol. 14, no. 22, pp. 2057–2062, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Schaefer and C. Rongo, “KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover,” Molecular Biology of the Cell, vol. 17, no. 3, pp. 1250–1260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. E. C. Park, D. R. Glodowski, and C. Rongo, “The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking,” PLoS ONE, vol. 4, no. 1, Article ID e4284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Dreier, M. Burbea, and J. M. Kaplan, “LIN-23-mediated degradation of β-catenin regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans,” Neuron, vol. 46, no. 1, pp. 51–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Rezvani, Y. Teng, D. Shim, and M. De Biasi, “Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity,” Journal of Neuroscience, vol. 27, no. 39, pp. 10508–10519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Zhang, Q. Hou, M. Wang et al., “Na, K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis,” Journal of Neuroscience, vol. 29, no. 14, pp. 4498–4511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. G. N. Patrick, B. Bingol, H. A. Weld, and E. M. Schuman, “Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs,” Current Biology, vol. 13, no. 23, pp. 2073–2081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. L. A. Schwarz, B. J. Hall, and G. N. Patrick, “Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway,” Journal of Neuroscience, vol. 30, no. 49, pp. 16718–16729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. P. Lussier, Y. Nasu-Nishimura, and K. W. Roche, “Activity-dependent ubiquitination of the AMPA receptor subunit GluA2,” Journal of Neuroscience, vol. 31, no. 8, pp. 3077–3081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Lin, Q. Hou, L. Jarzylo, S. Amato, J. Gilbert, et al., “Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking,” Journal of Neurochemistry, vol. 119, pp. 27–39, 2011. View at Publisher · View at Google Scholar
  58. A. K. Y. Fu, K. W. Hung, W. Y. Fu et al., “APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity,” Nature Neuroscience, vol. 14, no. 2, pp. 181–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. R. Kowalski, C. L. Dahlberg, and P. Juo, “The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans,” Journal of Neuroscience, vol. 31, no. 4, pp. 1341–1354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Suzuki, K. Tamai, M. Watanabe et al., “AMSH is required to degrade ubiquitinated proteins in the central nervous system,” Biochemical and Biophysical Research Communications, vol. 408, no. 4, pp. 582–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. T. C. Jacob, S. J. Moss, and R. Jurd, “GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition,” Nature Reviews Neuroscience, vol. 9, no. 5, pp. 331–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. S. Saliba, G. Michels, T. C. Jacob, M. N. Pangalos, and S. J. Moss, “Activity-dependent ubiquitination of GABAA receptors regulates their accumulation at synaptic sites,” Journal of Neuroscience, vol. 27, no. 48, pp. 13341–13351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. R. S. Saliba, Z. Gu, Z. Yan, and S. J. Moss, “Blocking L-type voltage-gated Ca2+ channels with dihydropyridines reduces γ-aminobutyric acid type A receptor expression and synaptic inhibition,” Journal of Biological Chemistry, vol. 284, no. 47, pp. 32544–32550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. K. Bedford, J. T. Kittler, E. Muller et al., “GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1,” Nature Neuroscience, vol. 4, no. 9, pp. 908–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. S. Saliba, M. Pangalos, and S. J. Moss, “The ubiquitin-like protein plic-1 enhances the membrane insertion of GABAA receptors by increasing their stability within the endoplasmic reticulum,” Journal of Biological Chemistry, vol. 283, no. 27, pp. 18538–18544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. I. L. Arancibia-Cárcamo, E. Y. Yuen, J. Muir et al., “Ubiquitin-dependent lysosomal targeting of GABAA receptors regulates neuronal inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 41, pp. 17552–17557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Grampp, K. Sauter, B. Markovic, and D. Benke, “γ-Aminobutyric acid type B receptors are constitutively internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24157–24165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Rezvani, Y. Teng, and M. De Biasi, “The ubiquitin-proteasome system regulates the stability of neuronal nicotinic acetylcholine receptors,” Journal of Molecular Neuroscience, vol. 40, no. 1-2, pp. 177–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Betz and B. Laube, “Glycine receptors: recent insights into their structural organization and functional diversity,” Journal of Neurochemistry, vol. 97, no. 6, pp. 1600–1610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Büttner, S. Sadtler, A. Leyendecker et al., “Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors,” Journal of Biological Chemistry, vol. 276, no. 46, pp. 42978–42985, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Fernández-Sánchez, J. Martínez-Villarreal, C. Giménez, and F. Zafra, “Constitutive and regulated endocytosis of the glycine transporter GLYT1b is controlled by ubiquitination,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19482–19492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Rondou, G. Haegeman, P. Vanhoenacker, and K. Van Craenenbroeck, “BTB protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase,” Journal of Biological Chemistry, vol. 283, no. 17, pp. 11083–11096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Rondou, K. Skieterska, A. Packeu et al., “KLHL12-mediated ubiquitination of the dopamine D4 receptor does not target the receptor for degradation,” Cellular Signalling, vol. 22, no. 6, pp. 900–913, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. O. J. Kim, “A single mutation at lysine 241 alters expression and trafficking of the D2 dopamine receptor,” Journal of Receptors and Signal Transduction, vol. 28, no. 5, pp. 453–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. N. Hegde, “Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity,” Progress in Neurobiology, vol. 73, no. 5, pp. 311–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. G. N. Patrick, “Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system,” Current Opinion in Neurobiology, vol. 16, no. 1, pp. 90–94, 2006. View at Publisher · View at Google Scholar · View at Scopus