About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 565167, 6 pages
http://dx.doi.org/10.1155/2013/565167
Research Article

Stimulation of Perforant Path Fibers Induces LTP Concurrently in Amygdala and Hippocampus in Awake Freely Behaving Rats

1Neuroscience Program, Trinity College, 300 Summit Street, Hartford, CT 06106, USA
2Department of Engineering, Trinity College, 300 Summit Street, Hartford, CT 06106, USA

Received 21 August 2012; Revised 21 December 2012; Accepted 22 December 2012

Academic Editor: Michael Stewart

Copyright © 2013 J. Harry Blaise and Rachel A. Hartman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Scopus
  2. S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annual Review of Neuroscience, vol. 23, pp. 649–711, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: Long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Malenka and R. A. Nicoll, “Long-term potentiation—a decade of progress?” Science, vol. 285, no. 5435, pp. 1870–1874, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. W. C. Abraham and J. M. Williams, “Properties and mechanisms of LTP maintenance,” Neuroscientist, vol. 9, no. 6, pp. 463–474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Ikegaya, H. Saito, and K. Abe, “High-frequency stimulation of the basolateral amygdala facilitates the induction of long-term potentiation in the dentate gyrus in vivo,” Neuroscience Research, vol. 22, no. 2, pp. 203–207, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Akirav and G. Richter-Levin, “Mechanisms of amygdala modulation of hippocampal plasticity,” Journal of Neuroscience, vol. 22, no. 22, pp. 9912–9921, 2002. View at Scopus
  8. G. Bush, P. Luu, and M. I. Posner, “Cognitive and emotional influences in anterior cingulate cortex,” Trends in Cognitive Sciences, vol. 4, no. 6, pp. 215–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Davis, J. M. Hitchcock, M. B. Bowers, C. W. Berridge, K. R. Melia, and R. H. Roth, “Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala,” Brain Research, vol. 664, no. 1-2, pp. 207–210, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. LeDoux, “Emotion circuits in the brain,” Annual Review of Neuroscience, vol. 23, pp. 155–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. McGaugh, “Memory consolidation and the amygdala: a systems perspective,” Trends in Neurosciences, vol. 25, no. 9, pp. 456–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. McGaugh, “The amygdala modulates the consolidation of memories of emotionally arousing experiences,” Annual Review of Neuroscience, vol. 27, pp. 1–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Paré, “Role of the basolateral amygdala in memory consolidation,” Progress in Neurobiology, vol. 70, no. 5, pp. 409–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Roozendaal, “Systems mediating acute glucocorticoid effects on memory consolidation and retrieval,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 8, pp. 1213–1223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cahill and J. L. McGaugh, “Modulation of memory storage,” Current Opinion in Neurobiology, vol. 6, no. 2, pp. 237–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. C. K. McIntyre, T. Miyashita, B. Setlow et al., “Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10718–10723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Eichenbaum, T. Otto, and N. J. Cohen, “The hippocampus—what does it do?” Behavioral and Neural Biology, vol. 57, no. 1, pp. 2–36, 1992. View at Scopus
  18. S. Maren, “Nuerobiology of Pavlovian fear conditioning,” Annual Review of Neuroscience, vol. 24, pp. 897–931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. McGaugh, C. K. McIntyre, and A. E. Power, “Amygdala modulation of memory consolidation: interaction with other brain systems,” Neurobiology of Learning and Memory, vol. 78, no. 3, pp. 539–552, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. LaBar and R. Cabeza, “Cognitive neuroscience of emotional memory,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 54–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. A. Phelps, M. R. Delgado, K. I. Nearing, and J. E. Ledoux, “Extinction learning in humans: role of the amygdala and vmPFC,” Neuron, vol. 43, no. 6, pp. 897–905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Mcdonald, “Cortical pathways to the mammalian amygdala,” Progress in Neurobiology, vol. 55, no. 3, pp. 257–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. B. Canto, F. G. Wouterlood, and M. P. Witter, “What does the anatomical organization of the entorhinal cortex tell us?” Neural Plasticity, vol. 2008, Article ID 381243, 18 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. G. Packard and L. Cahill, “Affective modulation of multiple memory systems,” Current Opinion in Neurobiology, vol. 11, no. 6, pp. 752–756, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Cahill and J. L. McGaugh, “Mechanisms of emotional arousal and lasting declarative memory,” Trends in Neurosciences, vol. 21, no. 7, pp. 294–299, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Kavushansky, R. M. Vouimba, H. Cohen, and G. Richter-Levin, “Activity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress,” Hippocampus, vol. 16, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Vouimba, D. Yaniv, D. Diamond, and G. Richter-Levin, “Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats,” European Journal of Neuroscience, vol. 19, no. 7, pp. 1887–1894, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Yaniv, R. M. Vouimba, D. M. Diamond, and G. Richter-Levin, “Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles,” Neuroscience, vol. 120, no. 4, pp. 1125–1135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. J. Canning and L. S. Leung, “Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study,” Hippocampus, vol. 7, no. 6, pp. 643–655, 1997.
  30. D. P. Cain, F. Boon, and E. L. Hargreaves, “Evidence for different neurochemical contributions to long-term potentiation and to kindling and kindling-induced potentiation: role of NMDA and urethane-sensitive mechanisms,” Experimental Neurology, vol. 116, no. 3, pp. 330–338, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. M. B. MacIver, D. L. Tauck, and J. J. Kendig, “General anaesthetic modification of synaptic facilitation and long-term potentiation in hippocampus,” British Journal of Anaesthesia, vol. 62, no. 3, pp. 301–310, 1989. View at Scopus
  32. M. E. Gilbert and C. M. Mack, “Field potential recordings in dentate gyrus of anesthetized rats: stability of baseline,” Hippocampus, vol. 9, no. 3, pp. 277–287, 1999.
  33. T. J. Shors and E. Dryver, “Effect of stress and long-term potentiation (LTP) on subsequent LTP and the theta burst response in the dentate gyrus,” Brain Research, vol. 666, no. 2, pp. 232–238, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. W. C. Abraham, S. E. Mason-Parker, M. F. Bear, S. Webb, and W. P. Tate, “Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10924–10929, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Maren, “Sexually dimorphic perforant path long-term potentiation (LTP) in urethane-anesthetized rats,” Neuroscience Letters, vol. 196, no. 3, pp. 177–180, 1995. View at Scopus
  36. R. Freudenthal, A. Romano, and A. Routtenberg, “Transcription factor NF-κB activation after in vivo perforant path LTP in mouse hippocampus,” Hippocampus, vol. 14, no. 6, pp. 677–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. Blaise, J. L. Koranda, U. Chow, K. E. Haines, and E. C. Dorward, “Neonatal isolation stress alters bidirectional long-term synaptic plasticity in amygdalo-hippocampal synapses in freely behaving adult rats,” Brain Research, vol. 1193, no. C, pp. 25–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. E. L. Hargreaves, D. P. Cain, and C. H. Vanderwolf, “Learning and behavioral-long-term potentiation: importance of controlling for motor activity,” Journal of Neuroscience, vol. 10, no. 5, pp. 1472–1478, 1990. View at Scopus
  39. J. Winson and C. Abzug, “Neuronal transmission through hippocampal pathways dependent on behavior,” Journal of Neurophysiology, vol. 41, no. 3, pp. 716–732, 1978. View at Scopus
  40. V. Aroniadou-Anderjaska, R. M. Post, M. A. Rogawski, and H. Li, “Input-specific LTP and depotentiation in the basolateral amygdala,” NeuroReport, vol. 12, no. 3, pp. 635–640, 2001. View at Scopus
  41. S. C. Stanford, “Central noradrenergic neurones and stress,” Pharmacology and Therapeutics, vol. 68, no. 2, pp. 297–342, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Galvez, M. H. Mesches, and J. L. Mcgaugh, “Norepinephrine release in the amygdala in response to footshock stimulation,” Neurobiology of Learning and Memory, vol. 66, no. 3, pp. 253–257, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. G. L. Quirarte, R. Galvez, B. Roozendaal, and J. L. McGaugh, “Norepinephrine release in the amygdala in response to footshock and opioid peptidergic drugs,” Brain Research, vol. 808, no. 2, pp. 134–140, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Tanaka, M. Yoshida, H. Emoto, and H. Ishii, “Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies,” European Journal of Pharmacology, vol. 405, no. 1–3, pp. 397–406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Aroniadou-Anderjaska, F. Qashu, and M. F. M. Braga, “Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders,” Amino Acids, vol. 32, no. 3, pp. 305–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. J. Berlau and J. L. McGaugh, “Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala,” Neurobiology of Learning and Memory, vol. 86, no. 2, pp. 123–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. J. McDonald and F. Mascagni, “Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat,” Neuroscience, vol. 77, no. 2, pp. 445–459, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Maren and M. S. Fanselow, “Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo,” Journal of Neuroscience, vol. 15, no. 11, pp. 7548–7564, 1995. View at Scopus