About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 605079, 8 pages
Research Article

Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

1Neuroscience Centre, University of Helsinki, 00790 Helsinki, Finland
2SARS Institute, University of Bergen, 5020 Bergen, Norway
3Finnish Institute of Occupational Health, 00250 Helsinki, Finland
4Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
5Centre for Nanotechnology Innovation, Italian Institute of Technology, 56127 Pisa, Italy
6Centre for Neuroscience and Cognitive Systems, Italian Institute of Technology, 38068 Rovereto, Italy
7Neuroscience Institute, CNR, 56100 Pisa, Italy

Received 1 May 2013; Accepted 10 June 2013

Academic Editor: Alessandro Sale

Copyright © 2013 Ettore Tiraboschi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.