About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 605079, 8 pages
http://dx.doi.org/10.1155/2013/605079
Research Article

Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

1Neuroscience Centre, University of Helsinki, 00790 Helsinki, Finland
2SARS Institute, University of Bergen, 5020 Bergen, Norway
3Finnish Institute of Occupational Health, 00250 Helsinki, Finland
4Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
5Centre for Nanotechnology Innovation, Italian Institute of Technology, 56127 Pisa, Italy
6Centre for Neuroscience and Cognitive Systems, Italian Institute of Technology, 38068 Rovereto, Italy
7Neuroscience Institute, CNR, 56100 Pisa, Italy

Received 1 May 2013; Accepted 10 June 2013

Academic Editor: Alessandro Sale

Copyright © 2013 Ettore Tiraboschi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Berardi, T. Pizzorusso, and L. Maffei, “Critical periods during sensory development,” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 138–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. V. B. Mountcastle, “The columnar organization of the neocortex,” Brain, vol. 120, part 4, pp. 701–722, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Tropea, A. van Wart, and M. Sur, “Molecular mechanisms of experience-dependent plasticity in visual cortex,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1515, pp. 341–355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. H. Hubel and T. N. Wiesel, “The period of susceptibility to the physiological effects of unilateral eye closure in kittens,” Journal of Physiology, vol. 206, no. 2, pp. 419–436, 1970. View at Scopus
  6. T. N. Wiesel and D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” Journal of Neurophysiology, vol. 26, pp. 1003–1017, 1963. View at Scopus
  7. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Maya-Vetencourt, A. Sale, A. Viegi et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. N. Karpova, A. Pickenhagen, J. Lindholm et al., “Fear erasure in mice requires synergy between antidepressant drugs and extinction training,” Science, vol. 334, no. 6063, pp. 1731–1734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Orlando, J. Ster, U. Gerber, J. W. Fawcett, and O. Raineteau, “Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner,” The Journal of Neuroscience, vol. 32, Article ID 18017a, pp. 18009–18017, 2012.
  11. T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett, and L. Maffei, “Reactivation of ocular dominance plasticity in the adult visual cortex,” Science, vol. 298, no. 5596, pp. 1248–1251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Baroncelli, A. Sale, A. Viegi et al., “Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex,” Experimental Neurology, vol. 226, no. 1, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Sale, J. F. Maya-Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Sale, N. Berardi, and L. Maffei, “Enrich the environment to empower the brain,” Trends in Neurosciences, vol. 32, no. 4, pp. 233–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Scali, L. Baroncelli, M. C. Cenni, A. Sale, and L. Maffei, “A rich environmental experience reactivates visual cortex plasticity in aged rats,” Experimental Gerontology, vol. 47, no. 4, pp. 337–341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Spolidoro, L. Baroncelli, E. Putignano, J. F. Maya-Vetencourt, A. Viegi, and L. Maffei, “Food restriction enhances visual cortex plasticity in adulthood,” Nature Communications, vol. 2, no. 1, article 320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Maya-Vetencourt, E. Tiraboschi, D. Greco et al., “Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex,” The Journal of Physiology, vol. 590, pp. 4777–4787, 2012. View at Publisher · View at Google Scholar
  18. S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, “Persistent cortical plasticity by upregulation of chondroitin 6-sulfation,” Nature Neuroscience, vol. 15, no. 3, pp. 414–422, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, “Removing brakes on adult brain plasticity: from molecular to behavioral interventions,” The Journal of Neuroscience, vol. 30, no. 45, pp. 14964–14971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Beurdeley, J. Spatazza, H. H. C. Lee et al., “Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex,” The Journal of Neuroscience, vol. 32, pp. 9429–9437, 2012.
  21. H. Morishita, J. M. Miwa, N. Heintz, and T. K. Hensch, “Lynx1, a cholinergic brake, limits plasticity in adult visual cortex,” Science, vol. 330, no. 6008, pp. 1238–1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. D. G. Southwell, R. C. Froemke, A. Alvarez-Buylla, M. P. Stryker, and S. P. Gandhi, “Cortical plasticity induced by inhibitory neuron transplantation,” Science, vol. 327, no. 5969, pp. 1145–1148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Di Cristo, B. Chattopadhyaya, S. J. Kuhlman et al., “Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity,” Nature Neuroscience, vol. 10, no. 12, pp. 1569–1577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. A. Pham, S. Impey, D. R. Storm, and M. P. Stryker, “Cre-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period,” Neuron, vol. 22, no. 1, pp. 63–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Putignano, G. Lonetti, L. Cancedda et al., “Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity,” Neuron, vol. 53, no. 5, pp. 747–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Wang, Q. Gu, and M. S. Cynader, “Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex,” Experimental Brain Research, vol. 114, no. 2, pp. 321–328, 1997. View at Scopus
  28. Q. Gu and W. Singer, “Involvement of serotonin in developmental plasticity of kitten visual cortex,” The European Journal of Neuroscience, vol. 7, no. 6, pp. 1146–1153, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. J. F. Maya-Vetencourt, E. Tiraboschi, M. Spolidoro, E. Castrén, and L. Maffei, “Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats,” The European Journal of Neuroscience, vol. 33, no. 1, pp. 49–57, 2011.
  30. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Fagiolini and T. K. Hensch, “Inhibitory threshold for critical-period activation in primary visual cortex,” Nature, vol. 404, no. 6774, pp. 183–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998. View at Scopus
  33. A. W. McGee, Y. Yang, Q. S. Fischer, N. W. Daw, and S. H. Strittmatter, “Neuroscience: experience-driven plasticity of visual cortex limited by myelin and nogo receptor,” Science, vol. 309, no. 5744, pp. 2222–2226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. E. J. Weeber, U. Beffert, C. Jones et al., “Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning,” The Journal of Biological Chemistry, vol. 277, no. 42, pp. 39944–39952, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. M. Reeves, M. L. Prins, J. Zhu, J. T. Povlishock, and L. L. Phillips, “Matrix metalloproteinase inhibition alters functional and structural correlates of deafferentation-induced sprouting in the dentate gyrus,” The Journal of Neuroscience, vol. 23, no. 32, pp. 10182–10189, 2003. View at Scopus
  36. J. Zuo, T. A. Ferguson, Y. J. Hernandez, W. G. Stetler-Stevenson, and D. Muir, “Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite- inhibiting chondroitin sulfate proteoglycan,” The Journal of Neuroscience, vol. 18, no. 14, pp. 5203–5211, 1998. View at Scopus
  37. V. W. Yong, C. Power, P. Forsyth, and D. R. Edwards, “Metalloproteinases in biology and pathology of the nervous system,” Nature Reviews Neuroscience, vol. 2, no. 7, pp. 502–511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Nagy, O. Bozdagi, A. Matynia et al., “Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory,” The Journal of Neuroscience, vol. 26, no. 7, pp. 1923–1934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. E. Meighan, P. C. Meighan, P. Choudhury et al., “Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity,” Journal of Neurochemistry, vol. 96, no. 5, pp. 1227–1241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. F. Maya-Vetencourt and N. Origlia, “Visual cortex plasticity: a complex interplay of genetic and environmental influences,” Neural Plasticity, vol. 2012, Article ID 631965, 14 pages, 2012. View at Publisher · View at Google Scholar
  41. J. Herz and Y. Chen, “Reelin, lipoprotein receptors and synaptic plasticity,” Nature Reviews Neuroscience, vol. 7, no. 11, pp. 850–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. G. D'Arcangelo, G. G. Miao, S.-C. Chen, H. D. Soares, J. I. Morgan, and T. Curran, “A protein related to extracellular matrix proteins deleted in the mouse mutant reeler,” Nature, vol. 374, no. 6524, pp. 719–723, 1995. View at Scopus
  43. S. H. Fatemi, “Reelin glycoprotein: structure, biology and roles in health and disease,” Molecular Psychiatry, vol. 10, no. 3, pp. 251–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Soriano and J. A. del Río, “The cells of cajal-retzius: still a mystery one century after,” Neuron, vol. 46, no. 3, pp. 389–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Hellwig, I. Hack, J. Kowalski et al., “Role for reelin in neurotransmitter release,” The Journal of Neuroscience, vol. 31, no. 7, pp. 2352–2360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Hajszan, N. J. MacLusky, and C. Leranth, “Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus,” The European Journal of Neuroscience, vol. 21, no. 5, pp. 1299–1303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Guirado, E. Varea, E. Castillo-Gómez et al., “Effects of chronic fluoxetine treatment on the rat somatosensory cortex: activation and induction of neuronal structural plasticity,” Neuroscience Letters, vol. 457, no. 1, pp. 12–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. H. Fatemi, T. J. Reutiman, and T. D. Folsom, “Chronic psychotropic drug treatment causes differential expression of Reelin signaling system in frontal cortex of rats,” Schizophrenia Research, vol. 111, no. 1–3, pp. 138–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Guirado, D. Sanchez-Matarredona, E. Varea, C. Crespo, J. M. Blasco-Ibáñez, and J. Nacher, “Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis,” BMC Neuroscience, vol. 13, no. 1, article 5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nature Neuroscience, vol. 14, no. 5, pp. 587–596, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. A. C. Flint, U. S. Maisch, J. H. Weishaupt, A. R. Kriegstein, and H. Monyer, “NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex,” The Journal of Neuroscience, vol. 17, no. 7, pp. 2469–2476, 1997. View at Scopus
  52. G. Carmignoto and S. Vicini, “Activity-dependent decrease in NMDA receptor responses during development of the visual cortex,” Science, vol. 258, no. 5084, pp. 1007–1011, 1992. View at Scopus
  53. K. K. A. Cho, L. Khibnik, B. D. Philpot, and M. F. Bear, “The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5377–5382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. W. Lyckman, S. Horng, C. A. Leamey et al., “Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9409–9414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Castrén and T. Rantamäki, “The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity,” Developmental Neurobiology, vol. 70, no. 5, pp. 289–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Tsankova, W. Renthal, A. Kumar, and E. J. Nestler, “Epigenetic regulation in psychiatric disorders,” Nature Reviews Neuroscience, vol. 8, no. 5, pp. 355–367, 2007. View at Publisher · View at Google Scholar · View at Scopus