About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 639430, 12 pages
http://dx.doi.org/10.1155/2013/639430
Review Article

Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

1LREN, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, CH-1011 Lausanne, Switzerland
2Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, CH-1011 Lausanne, Switzerland

Received 13 December 2012; Revised 8 February 2013; Accepted 9 February 2013

Academic Editor: Maurice Ptito

Copyright © 2013 Maria G. Knyazeva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Lamantia and P. Rakic, “Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey,” Journal of Comparative Neurology, vol. 291, no. 4, pp. 520–537, 1990. View at Scopus
  2. F. Aboitiz, A. B. Scheibel, R. S. Fisher, and E. Zaidel, “Fiber composition of the human corpus callosum,” Brain Research, vol. 598, no. 1-2, pp. 143–153, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. R. F. Dougherty, M. Ben-Shachar, G. Deutsch, P. Potanina, R. Bammer, and B. A. Wandell, “Occipital-callosal pathways in children validation and atlas development,” Annals of the New York Academy of Sciences, vol. 1064, pp. 98–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Hofer and J. Frahm, “Topography of the human corpus callosum revisited-Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging,” NeuroImage, vol. 32, no. 3, pp. 989–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Saenz and I. Fine, “Topographic organization of V1 projections through the corpus callosum in humans,” NeuroImage, vol. 52, no. 4, pp. 1224–1229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Segraves and G. M. Innocenti, “Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers,” Journal of Neuroscience, vol. 5, no. 8, pp. 2107–2118, 1985. View at Scopus
  7. G. M. Innocenti, “General organization of callosal connections in the cerebral cortex,” in Cerebral Cortex, E. G. Jones and A. Peters, Eds., pp. 291–353, Plenum, New York, NY, USA, 1986.
  8. J. M. Clarke and E. Zaidel, “Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization,” Behavioural Brain Research, vol. 64, no. 1-2, pp. 185–202, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Clarke, “The role of homotopic and heterotopic callosal connections in man,” in The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum, E. Zaidel and M. Iacoboni, Eds., pp. 461–472, MIT Press, Cambridge, Mass, USA, 2003.
  10. D. C. Van Essen, W. T. Newsome, and J. L. Bixby, “The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey,” Journal of Neuroscience, vol. 2, no. 3, pp. 265–283, 1982. View at Scopus
  11. H. Kennedy, C. Meissirel, and C. Dehay, “Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity,” in Vision and Visual Dysfunction, Vol 3: Neuroanatomy of the Visual Pathways and Their Development, B. Dreher and S. Robinson, Eds., pp. 324–359, Macmillan, London, UK, 1991.
  12. M. C. Putnam, M. S. Steven, K. W. Doron, A. C. Riggall, and M. S. Gazzaniga, “Cortical projection topography of the human splenium: hemispheric asymmetry and individual differences,” Journal of Cognitive Neuroscience, vol. 22, no. 8, pp. 1662–1669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Clarke, R. Kraftsik, H. Van der Loos, and G. M. Innocenti, “Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism?” Journal of Comparative Neurology, vol. 280, no. 2, pp. 213–230, 1989. View at Scopus
  14. L. J. Richards, C. Plachez, and T. Ren, “Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human,” Clinical Genetics, vol. 66, no. 4, pp. 276–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Raybaud, “The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation,” Neuroradiology, vol. 52, no. 6, pp. 447–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Aboitiz and J. Montiel, “One hundred million years of interhemispheric communication: the history of the corpus callosum,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 4, pp. 409–420, 2003. View at Scopus
  17. W. Hewitt, “The development of the human corpus callosum,” Journal of Anatomy, vol. 96, pp. 355–358, 1962. View at Scopus
  18. P. Rakic and P. I. Yakovlev, “Development of the corpus callosum and cavum septi in man,” Journal of Comparative Neurology, vol. 132, no. 1, pp. 45–72, 1968. View at Scopus
  19. T. Ren, A. Anderson, W. B. Shen et al., “Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain,” The Anatomical Record Part A, vol. 288, no. 2, pp. 191–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. I. Yakovlev and A. R. Lecours, “The myelogenetic cycles of regional maturation of the brain,” in Regional Development of the Brain in Early Life, A. Minkowski, Ed., pp. 3–70, Blackwell Scientific, London, UK, 1967.
  21. H. C. Kinney, B. A. Brody, A. S. Kloman, and F. H. Gilles, “Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants,” Journal of Neuropathology and Experimental Neurology, vol. 47, no. 3, pp. 217–234, 1988. View at Scopus
  22. K. A. Phillips and P. Kochunov, “Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging,” Open Neuroimaging Journal, vol. 5, supplement M6, pp. 181–187, 2011.
  23. G. M. Innocenti and D. J. Price, “Exuberance in the development of cortical networks,” Nature Reviews Neuroscience, vol. 6, no. 12, pp. 955–965, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. W. D. Hopkins and K. A. Phillips, “Cross-sectional analysis of the association between age and corpus callosum size in chimpanzees (Pan troglodytes,” Developmental Psychobiology, vol. 52, no. 2, pp. 133–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Pierre, W. D. Hopkins, J. P. Taglialatela, C. J. Lees, and A. J. Bennett, “Age-related neuroanatomical differences from the juvenile period to adulthood in mother-reared macaques (Macaca radiata),” Brain Research, vol. 1226, pp. 56–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Phillips and C. C. Sherwood, “Age-related differences in corpus callosum area of capuchin monkeys,” Neuroscience, vol. 202, pp. 202–208, 2012.
  27. J. N. Giedd, J. W. Snell, N. Lange et al., “Quantitative magnetic resonance imaging of human brain development: ages 4–18,” Cerebral Cortex, vol. 6, no. 4, pp. 551–560, 1996. View at Scopus
  28. J. N. Giedd, J. Blumenthal, N. O. Jeffries et al., “Brain development during childhood and adolescence: a longitudinal MRI study,” Nature Neuroscience, vol. 2, no. 10, pp. 861–863, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Thompson, J. N. Gledd, R. P. Woods, D. MacDonald, A. C. Evans, and A. W. Toga, “Growth patterns in the developing brain detected by using continuum mechanical tensor maps,” Nature, vol. 404, no. 6774, pp. 190–193, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. K. Chung, K. J. Worsley, T. Paus et al., “A unified statistical approach to deformation-based morphometry,” NeuroImage, vol. 14, no. 3, pp. 595–606, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Y. Kim, D. H. Kim, E. Yoo et al., “Visualization of maturation of the corpus callosum during childhood and adolescence using T2 relaxometry,” International Journal of Developmental Neuroscience, vol. 25, no. 6, pp. 409–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Snook, L. A. Paulson, D. Roy, L. Phillips, and C. Beaulieu, “Diffusion tensor imaging of neurodevelopment in children and young adults,” NeuroImage, vol. 26, no. 4, pp. 1164–1173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. C. R. McLaughlin, R. H. Paul, S. M. Grieve et al., “Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan,” International Journal of Developmental Neuroscience, vol. 25, no. 4, pp. 215–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Luders, P. M. Thompson, and A. W. Toga, “The development of the corpus callosum in the healthy human brain,” Journal of Neuroscience, vol. 30, no. 33, pp. 10985–10990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. M. Chalupa and H. P. Killackey, “Process elimination underlies ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 1076–1079, 1989. View at Scopus
  36. L. M. Chalupa, H. P. Killackey, C. J. Snider, and B. Lia, “Callosal projection neurons in area 17 of the fetal rhesus monkey,” Developmental Brain Research, vol. 46, no. 2, pp. 303–308, 1989. View at Scopus
  37. B. A. Brody, H. C. Kinney, A. S. Kloman, and F. H. Gilles, “Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination,” Journal of Neuropathology and Experimental Neurology, vol. 46, no. 3, pp. 283–301, 1987. View at Scopus
  38. E. Fornari, M. G. Knyazeva, R. Meuli, and P. Maeder, “Myelination shapes functional activity in the developing brain,” NeuroImage, vol. 38, no. 3, pp. 511–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Wozniak and K. O. Lim, “Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 762–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. J. Stanisz, A. Kecojevic, M. J. Bronskill, and R. M. Henkelman, “Characterizing white matter with magnetization transfer and T2,” Magnetic Resonance Medicine, vol. 42, no. 6, pp. 1128–1136, 1999.
  41. K. Schmierer, F. Scaravilli, D. R. Altmann, G. J. Barker, and D. H. Miller, “Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain,” Annals of Neurology, vol. 56, no. 3, pp. 407–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Button, D. Altmann, D. Tozer et al., “Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab,” Multiple Sclerosis Journal, vol. 19, no. 2, pp. 241–244, 2013. View at Publisher · View at Google Scholar
  43. M. Gozzi, D. M. Nielson, R. K. Lenroot et al., “A magnetization transfer imaging study of corpus callosum myelination in young children with autism,” Biological Psychiatry, vol. 72, no. 3, pp. 215–220, 2012. View at Publisher · View at Google Scholar
  44. E. Fornari, P. Maeder, R. Meuli, J. Ghika, and M. G. Knyazeva, “Demyelination of superficial white matter in early Alzheimer's disease: a magnetization transfer imaging study,” Neurobiology of Aging, vol. 33, no. 2, pp. 428.e7–428.e19, 2012. View at Publisher · View at Google Scholar
  45. R. D. Fields, “Myelination: an overlooked mechanism of synaptic plasticity?” Neuroscientist, vol. 11, no. 6, pp. 528–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Markham, M. M. Herting, A. E. Luszpak, J. M. Juraska, and W. T. Greenough, “Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood,” Brain Research, vol. 1288, pp. 9–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Blumenfeld-Katzir, O. Pasternak, M. Dagan, and Y. Assaf, “Diffusion MRI of structural brain plasticity induced by a learning and memory task,” PLoS ONE, vol. 6, no. 6, Article ID e20678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Schlaug, L. Jäncke, Y. Huang, J. F. Staiger, and H. Steinmetz, “Increased corpus callosum size in musicians,” Neuropsychologia, vol. 33, no. 8, pp. 1047–1055, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Atkinson, The Developing Visual Brain, vol. 32 of Oxford Psychology Series, Oxford University Press, 2002.
  50. J. S. Bloom and G. W. Hynd, “The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition?” Neuropsychology Review, vol. 15, no. 2, pp. 59–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Carmeli, L. Lopez-Aguadao, K. E. Schmidt, O. De Feo, and G. M. Innocenti, “A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas,” PLoS ONE, vol. 2, no. 12, Article ID e1287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. V. A. Makarov, K. E. Schmidt, N. P. Castellanos, L. Lopez-Aguado, and G. M. Innocenti, “Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius),” Cerebral Cortex, vol. 18, no. 8, pp. 1951–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. E. Schmidt, S. G. Lomber, and G. M. Innocenti, “Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input,” Cerebral Cortex, vol. 20, no. 12, pp. 2776–2786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Lisman and G. Buzsáki, “A neural coding scheme formed by the combined function of gamma and theta oscillations,” Schizophrenia Bulletin, vol. 34, no. 5, pp. 974–980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Fell and N. Axmacher, “The role of phase synchronization in memory processes,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 105–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. J. F. Olavarria and P. L. Abel, “The distribution of callosal connections correlates with the pattern of cytochrome oxidase stripes in visual area V2 of Macaque monkeys,” Cerebral Cortex, vol. 6, no. 4, pp. 631–639, 1996. View at Scopus
  57. H. D. Lu, G. Chen, H. Tanigawa, and A. W. Roe, “A motion direction map in macaque V2,” Neuron, vol. 68, no. 5, pp. 1002–1013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. X. An, H. Gong, L. Qian et al., “Distinct functional organizations for processing different motion signals in V1, V2, and V4 of macaque,” The Journal of Neuroscience, vol. 32, no. 39, pp. 13363–13379, 2012.
  59. S. Grossberg and E. Mingolla, “Neural dynamics of form perception: boundary. boundary completion, illusory figures, and neon color spreading,” Psychological Review, vol. 92, no. 2, pp. 173–211, 1985. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Itti and C. Koch, “Computational modelling of visual attention,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Desimone, J. Moran, S. J. Schein, and M. Mishkin, “A role for the corpus callosum in visual area V4 of the macaque,” Visual Neuroscience, vol. 10, no. 1, pp. 159–171, 1993. View at Scopus
  62. P. D. Zufferey, F. Jin, H. Nakamura, L. Tettoni, and G. M. Innocenti, “The role of pattern vision in the development of cortico-cortical connections,” European Journal of Neuroscience, vol. 11, no. 8, pp. 2669–2688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. G. M. Innocenti, F. Ansermet, and J. Parnas, “Schizophrenia, neurodevelopment and corpus callosum,” Molecular Psychiatry, vol. 8, no. 3, pp. 261–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Schuz and V. Braitenberg, “The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity,” in Cortical Areas, Unity and Diversity: Conceptual Advances in Brain Research, A. Schultz and R. Miller, Eds., pp. 377–386, Taylor & Francis, London, UK, 2002.
  65. A. Angelucci and J. Bullier, “Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?” Journal of Physiology Paris, vol. 97, no. 2-3, pp. 141–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. A. K. Engel, P. König, A. K. Kreiter, and W. Singer, “Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex,” Science, vol. 252, no. 5010, pp. 1177–1179, 1991. View at Scopus
  67. D. C. Kiper, M. G. Knyazeva, L. Tettoni, and G. M. Innocenti, “Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets,” Journal of Neurophysiology, vol. 82, no. 6, pp. 3082–3094, 1999. View at Scopus
  68. M. G. Knyazeva, D. C. Kiper, V. Y. Vildavski, P. A. Despland, M. Maeder-Ingvar, and G. M. Innocenti, “Visual stimulus-dependent changes in interhemispheric EEG coherence in humans,” Journal of Neurophysiology, vol. 82, no. 6, pp. 3095–3107, 1999. View at Scopus
  69. T. Koeda, M. Knyazeva, C. Njiokiktjien, E. J. Jonkman, L. De Sonneville, and V. Vildavsky, “The EEG in acallosal children. Coherence values in the resting state: left hemisphere compensatory mechanism?” Electroencephalography and Clinical Neurophysiology, vol. 95, no. 6, pp. 397–407, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Nielsen, J. Montplaisir, and M. Lassonde, “Sleep architecture in agenesis of the corpus callosum: laboratory assessment of four cases,” Journal of Sleep Research, vol. 1, no. 3, pp. 197–200, 1992. View at Scopus
  71. M. Brázdil, J. Brichta, V. Krajča, R. Kuba, and P. Daniel, “Interhemispheric EEG coherence after corpus callosotomy,” European Journal of Neurology, vol. 4, no. 4, pp. 419–425, 1997. View at Scopus
  72. F. Lopes da Silva, “Neural mechanisms underlying brain waves: from neural membranes to networks,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 2, pp. 81–93, 1991. View at Scopus
  73. F. Lopes da Silva, “Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models,” Magnetic Resonance Imaging, vol. 22, no. 10, pp. 1533–1538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. D. A. Farber and V. V. Alferova, The Electroencephalogram of Children and Adolescents, Pedagogika Publishing House, Moscow, Russia, 1972.
  75. C. G. Bernhard and C. R. Skoglund, “On the alpha frequency of human brain potentials as a function of age,” Skandinavisches Archiv für Physiologie, vol. 82, no. 2, pp. 178–184, 2012.
  76. T. A. Stroganova, E. V. Orekhova, and I. N. Posikera, “EEG alpha rhythm in infants,” Clinical Neurophysiology, vol. 110, no. 6, pp. 997–1012, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Valdés, R. Biscay, L. Galan, J. Bosch, S. Szava, and T. Virués, “High resolution spectral EEG norms for topography,” Brain Topography, vol. 3, pp. 281–282, 1990.
  78. R. Srinivasan, “Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children,” Clinical Neurophysiology, vol. 110, no. 8, pp. 1351–1362, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. D. A. Farber and M. G. Knyazeva, “Electrophysiological correlates of interhemispheric interaction in ontogenesis,” in Pediatric Behavioural Neurology, G. Ramaekers and C. Njiokiktjien, Eds., vol. 3, pp. 86–99, Suyi Publications, Amsterdam, The Netherlands, 1991.
  80. J. B. Colby, J. D. Van Horn, and E. R. Sowell, “Quantitative in vivo evidence for broad regional gradients in the timing of white matter maturation during adolescence,” NeuroImage, vol. 54, no. 1, pp. 25–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Lebel, M. Gee, R. Camicioli, M. Wieler, W. Martin, and C. Beaulieu, “Diffusion tensor imaging of white matter tract evolution over the lifespan,” NeuroImage, vol. 60, no. 1, pp. 340–352, 2012. View at Publisher · View at Google Scholar
  82. O. David and K. J. Friston, “A neural mass model for MEG/EEG: coupling and neuronal dynamics,” NeuroImage, vol. 20, no. 3, pp. 1743–1755, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. R. C. Sotero, N. J. Trujillo-Barreto, Y. Iturria-Medina, F. Carbonell, and J. C. Jimenez, “Realistically coupled neural mass models can generate EEG rhythms,” Neural Computation, vol. 19, no. 2, pp. 478–512, 2007. View at Scopus
  84. P. A. Valdés-Hernández, A. Ojeda-González, E. Martínez-Montes et al., “White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm,” NeuroImage, vol. 49, no. 3, pp. 2328–2339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Jann, A. Federspiel, S. Giezendanner, et al., “Linking brain connectivity across different time scales with electroencephalogram, functional magnetic resonance imaging, and diffusion tensor imaging,” Brain Connectivity, vol. 2, no. 1, pp. 11–20, 2012. View at Publisher · View at Google Scholar
  86. E. S. Spelke, “Principles of object perception,” Cognitive Science, vol. 14, no. 1, pp. 29–56, 1990. View at Scopus
  87. F. Simion, L. Regolin, and H. Bulf, “A predisposition for biological motion in the newborn baby,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 809–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. K. R. Dobkins, I. Fine, A. C. Hsueh, and C. Vitten, “Pattern motion integration in infants,” Journal of Vision, vol. 4, no. 3, pp. 144–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. T. L. Lewis, D. Ellemberg, D. Maurer, M. Dirks, F. Wilkinson, and H. R. Wilson, “A window on the normal development of sensitivity to global form in glass patterns,” Perception, vol. 33, no. 4, pp. 409–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. I. Kovács, P. Kozma, A. Fehér, and G. Benedek, “Late maturation of visual spatial integration in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 21, pp. 12204–12209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. B. S. Hadad, D. Maurer, and T. L. Lewis, “Long trajectory for the development of sensitivity to global and biological motion,” Developmental Science, vol. 14, no. 6, pp. 1330–1339, 2011.
  92. C. J. Mondloch, S. Geldart, D. Maurer, and S. de Schonen, “Developmental changes in the processing of hierarchical shapes continue into adolescence,” Journal of Experimental Child Psychology, vol. 84, no. 1, pp. 20–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. K. S. Scherf, M. Behrmann, R. Kimchi, and B. Luna, “Emergence of global shape processing continues through adolescence,” Child Development, vol. 80, no. 1, pp. 162–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. B. S. Hadad and R. Kimchi, “Developmental trends in utilizing perceptual closure for grouping of shape: effects of spatial proximity and collinearity,” Perception and Psychophysics, vol. 68, no. 8, pp. 1264–1273, 2006. View at Scopus
  95. E. Luders, K. L. Narr, P. M. Thompson, and A. W. Toga, “Neuroanatomical correlates of intelligence,” Intelligence, vol. 37, no. 2, pp. 156–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Carmeli, A. Donati, V. Antille, et al., “Demyelination in amnestic mild cognitive impairment: a magnetization transfer imaging study,” in Society for Neuroscience Abstracts, vol. 38, New Orleans, La, USA, 2012.
  97. G. M. Innocenti, “Dynamic interactions between the cerebral hemispheres,” Experimental Brain Research, vol. 192, no. 3, pp. 417–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. G. Knyazeva, E. Fornari, R. Meuli, G. Innocenti, and P. Maeder, “Imaging of a synchronous neuronal assembly in the human visual brain,” NeuroImage, vol. 29, no. 2, pp. 593–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. G. Knyazeva, E. Fornari, R. Meuli, and P. Maeder, “Interhemispheric integration at different spatial scales: the evidence from EEG coherence and fMRI,” Journal of Neurophysiology, vol. 96, no. 1, pp. 259–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Rytsar, E. Fornari, and M. G. Knyazeva, “Development of spatial integration depends on top-down and interhemispheric effects: a DCM analysis,” submitted.
  101. K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. K. E. Stephan, W. D. Penny, R. J. Moran, H. E. M. den Ouden, J. Daunizeau, and K. J. Friston, “Ten simple rules for dynamic causal modeling,” NeuroImage, vol. 49, no. 4, pp. 3099–3109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. S. B. Eickhoff, K. E. Stephan, H. Mohlberg et al., “A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data,” NeuroImage, vol. 25, no. 4, pp. 1325–1335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Bocci, M. Caleo, E. Giorli et al., “Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex,” Neuroscience, vol. 187, pp. 43–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Tadin, J. S. Lappin, L. A. Gilroy, and R. Blake, “Perceptual consequences of centre-surround antagonism in visual motion processing,” Nature, vol. 424, no. 6946, pp. 312–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. C. C. Pack, J. N. Hunter, and R. T. Born, “Contrast dependence of suppressive influences in cortical area MT of alert macaque,” Journal of Neurophysiology, vol. 93, no. 3, pp. 1809–1815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. R. N. Sachdev, M. R. Krause, and J. A. Mazer, “Surround suppression and sparse coding in visual and barrel cortices,” Frontiers in Neural Circuits, vol. 6, p. 43, 2012.
  108. B. Haider, M. Hausser, and M. Carandini, “Inhibition dominates sensory responses in the awake cortex,” Nature, vol. 493, no. 7430, pp. 97–100, 2012.
  109. M. A. Smith, W. Bair, and J. Anthony Movshon, “Dynamics of suppression in macaque primary visual cortex,” Journal of Neuroscience, vol. 26, no. 18, pp. 4826–4834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. H. J. Alitto and Y. Dan, “Function of inhibition in visual cortical processing,” Current Opinion in Neurobiology, vol. 20, no. 3, pp. 340–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Ban, H. Yamamoto, M. Fukunaga et al., “Toward a common circle: interhemispheric contextual modulation in human early visual areas,” Journal of Neuroscience, vol. 26, no. 34, pp. 8804–8809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Lassonde, H. Sauerwein, G. Geoffroy, and M. Decarie, “Effects of early and late transection of the corpus callosum in children. A study of tactile and tactuomotor transfer and integration,” Brain, vol. 109, no. 5, pp. 953–967, 1986. View at Scopus
  113. M. Lassonde, H. Sauerwein, A. J. Chicoine, and G. Geoffroy, “Absence of disconnexion syndrome in callosal agenesis and early callosotomy: brain reorganization or lack of structural specificity during ontogeny?” Neuropsychologia, vol. 29, no. 6, pp. 481–495, 1991. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Ptito and F. Lepore, “Interocular transfer in cats with early callosal transection,” Nature, vol. 301, no. 5900, pp. 513–515, 1983. View at Scopus
  115. J. G. Pinto, K. R. Hornby, D. G. Jones, and K. M. Murphy, “Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan,” Frontiers in Cellular Neuroscience, vol. 4, article 16, pp. 1–12, 2010.
  116. I. P. Conner, S. Sharma, S. K. Lemieux, and J. D. Mendola, “Retinotopic organization in children measured with fMRI,” Journal of Vision, vol. 4, no. 6, pp. 509–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Burkhalter, “Development of forward and feedback connections between areas V1 and V2 of human visual cortex,” Cerebral Cortex, vol. 3, no. 5, pp. 476–487, 1993. View at Scopus
  118. A. Burkhalter, K. L. Bernardo, and V. Charles, “Development of local circuits in human visual cortex,” Journal of Neuroscience, vol. 13, no. 5, pp. 1916–1931, 1993. View at Scopus
  119. P. R. Huttenlocher, “Morphometric study of human cerebral cortex development,” Neuropsychologia, vol. 28, no. 6, pp. 517–527, 1990. View at Publisher · View at Google Scholar · View at Scopus