About this Journal Submit a Manuscript Table of Contents
Neural Plasticity
Volume 2013 (2013), Article ID 709732, 10 pages
http://dx.doi.org/10.1155/2013/709732
Research Article

Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

1Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90046-900 Porto Alegre, RS, Brazil
2Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil

Received 3 September 2012; Revised 23 November 2012; Accepted 3 December 2012

Academic Editor: Michel Baudry

Copyright © 2013 Caren Bernardi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. van Praag, “Exercise and the brain: something to chew on,” Trends in Neurosciences, vol. 32, no. 5, pp. 283–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Ma, “Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health,” Neuroscience Bulletin, vol. 24, no. 4, pp. 265–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. van Praag, B. R. Christie, T. J. Sejnowski, and F. H. Gage, “Running enhances neurogenesis, learning, and long-term potentiation in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13427–13431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. M. K. Jedrziewski, V. M. Y. Lee, and J. Q. Trojanowski, “Physical activity and cognitive health,” Alzheimer's and Dementia, vol. 3, no. 2, pp. 98–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Radák, T. Kaneko, S. Tahara et al., “Regular exercise improves cognitive function and decreases oxidative damage in rat brain,” Neurochemistry International, vol. 38, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Ogonovszky, I. Berkes, S. Kumagai et al., “The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain,” Neurochemistry International, vol. 46, no. 8, pp. 635–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. T. Ang, G. S. Dawe, P. T. H. Wong, S. Moochhala, and Y. K. Ng, “Alterations in spatial learning and memory after forced exercise,” Brain Research, vol. 1113, no. 1, pp. 186–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Grace, S. Hescham, L. A. Kellaway, K. Bugarith, and V. A. Russell, “Effect of exercise on learning and memory in a rat model of developmental stress,” Metabolic Brain Disease, vol. 24, no. 4, pp. 643–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. W. Cotman and N. C. Berchtold, “Exercise: a behavioral intervention to enhance brain health and plasticity,” Trends in Neurosciences, vol. 25, no. 6, pp. 295–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Smith and M. J. Zigmond, “Can the brain be protected through exercise? Lessons from an animal model of parkinsonism,” Experimental Neurology, vol. 184, no. 1, pp. 31–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Zoladz and A. Pilc, “The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies,” Journal of Physiology and Pharmacology, vol. 61, no. 5, pp. 533–541, 2010.
  12. V. Parpura and R. Zorec, “Gliotransmission: exocytotic release from astrocytes,” Brain Research Reviews, vol. 63, no. 1-2, pp. 83–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Perea and A. Araque, “GLIA modulates synaptic transmission,” Brain Research Reviews, vol. 63, no. 1-2, pp. 93–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Dringen, “Metabolism and functions of glutathione in brain,” Progress in Neurobiology, vol. 62, no. 6, pp. 649–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Li, Y. H. Ding, J. A. Rafols, Q. Lai, J. P. McAllister II, and Y. Ding, “Increased astrocyte proliferation in rats after running exercise,” Neuroscience Letters, vol. 386, no. 3, pp. 160–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. E. Gibbs, D. Hutchinson, and L. Hertz, “Astrocytic involvement in learning and memory consolidation,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 5, pp. 927–944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Correale and A. Villa, “Cellular elements of the blood-brain barrier,” Neurochemical Research, vol. 34, no. 12, pp. 2067–2077, 2009. View at Publisher · View at Google Scholar
  18. M. Bergami, S. Santi, E. Formaggio et al., “Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes,” Journal of Cell Biology, vol. 183, no. 2, pp. 213–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. G. Haydon and G. Carmignoto, “Astrocyte control of synaptic transmission and neurovascular coupling,” Physiological Reviews, vol. 86, no. 3, pp. 1009–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Rodrigues, M. F. Dutra, J. Ilha et al., “Treadmill training restores spatial cognitive deficits and neurochemical alterations in the hippocampus of rats submitted to an intracerebroventricular administration of streptozotocin,” Journal of Neural Transmission, vol. 117, no. 11, pp. 1295–1305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. N. de Senna, J. Ilha, P. P. A. Baptista et al., “Effects of physical exercise on spatial memory and astroglial alterations in the hippocampus of diabetic rats,” Metabolic Brain Disease, vol. 26, no. 4, pp. 269–279, 2011. View at Publisher · View at Google Scholar
  22. E. T. Ang, P. T. H. Wong, S. Moochhala, and Y. K. Ng, “Cytokine changes in the horizontal diagonal band of broca in the septum after running and stroke: a correlation to glial activation,” Neuroscience, vol. 129, no. 2, pp. 337–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Santin, R. F. da Rocha, F. Cechetti et al., “Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus,” Brain Research, vol. 1421, pp. 1–10, 2011. View at Publisher · View at Google Scholar
  24. P. R. Burghardt, L. J. Fulk, G. A. Hand, and M. A. Wilson, “The effects of chronic treadmill and wheel running on behavior in rats,” Brain Research, vol. 1019, no. 1-2, pp. 84–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. M. Melo, E. Martinho Jr., and L. C. Michelini, “Training-induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and nonexercised muscles,” Hypertension, vol. 42, no. 4, pp. 851–857, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Scopel, C. Fochesatto, H. Cimarosti et al., “Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation,” Brain Research Bulletin, vol. 71, no. 1–3, pp. 155–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. B. O. Netto, S. Conte, M. C. Leite et al., “Serum S100B protein is increased in fasting rats,” Archives of Medical Research, vol. 37, no. 5, pp. 683–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Leite, F. Galland, G. Brolese et al., “A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein,” Journal of Neuroscience Methods, vol. 169, no. 1, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Tramontina, M. C. Leite, K. Cereser et al., “Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state,” Journal of Neuroscience Methods, vol. 162, no. 1-2, pp. 282–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Swarowsky, L. Rodrigues, R. Biasibetti et al., “Glial alterations in the hippocampus of rats submitted to ibotenic-induced lesion of the nucleus basalis magnocellularis,” Behavioural Brain Research, vol. 190, no. 2, pp. 206–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. P. Thomazi, G. F. Godinho, J. M. Rodrigues et al., “Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine,” Mechanisms of Ageing and Development, vol. 125, no. 7, pp. 475–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Feoli, I. Siqueira, L. M. V. Almeida et al., “Brain glutathione content and glutamate uptake are reduced in rats exposed to pre- and postnatal protein malnutrition,” Journal of Nutrition, vol. 136, no. 9, pp. 2357–2361, 2006. View at Scopus
  33. R. W. Browne and D. Armstrong, “Reduced glutathione and glutathione disulfide,” Methods in Molecular Biology, vol. 108, pp. 347–352, 1998. View at Scopus
  34. J. M. Hevel and M. A. Marletta, “Nitric-oxide synthase assays,” Methods in Enzymology, vol. 233, pp. 250–258, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Quincozes-Santos, P. Nardin, D. F. Souza et al., “The janus face of resveratrol in astroglial cells,” Neurotoxicity Research, vol. 16, no. 1, pp. 30–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. P. Garetto, E. A. Richter, M. N. Goodman, and N. B. Ruderman, “Enhanced muscle glucose metabolism after exercise in the rat: the two phases,” The American Journal of Physiology, vol. 246, no. 6, pp. E471–475, 1984. View at Scopus
  37. F. A. Voltarelli, C. A. Gobatto, and M. A. de Mello, “Determination of anaerobic threshold in rats using the lactate minimum test,” Brazilian Journal of Medical and Biological Research, vol. 35, no. 11, pp. 1389–1394, 2002. View at Scopus
  38. E. T. Ang and F. Gomez-Pinilla, “Potential therapeutic effects of exercise to the brain,” Current Medicinal Chemistry, vol. 14, no. 24, pp. 2564–2571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. T. U. Schaefers, K. Grafen, G. Teuchert-Noodt, and Y. Winter, “Synaptic remodeling in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex of mice: effects of deprived rearing and voluntary running,” Neural Plasticity, vol. 2010, Article ID 870573, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Haber, L. Zhou, and K. K. Murai, “Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses,” Journal of Neuroscience, vol. 26, no. 35, pp. 8881–8891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNFα,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Panatier, D. T. Theodosis, J. P. Mothet et al., “Glia-derived D-serine controls NMDA receptor activity and synaptic memory,” Cell, vol. 125, no. 4, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Middeldorp and E. M. Hol, “GFAP in health and disease,” Progress in Neurobiology, vol. 93, no. 3, pp. 421–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. W. Cotman, N. C. Berchtold, and L. A. Christie, “Exercise builds brain health: key roles of growth factor cascades and inflammation,” Trends in Neurosciences, vol. 30, no. 9, pp. 464–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. van Hall, M. Strømstad, P. Rasmussen et al., “Blood lactate is an important energy source for the human brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 6, pp. 1121–1129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Lezi, J. Lu, J. M. Burns, and R. H. Swerdlow, “Effect of exercise on mouse liver and brain bioenergetic infrastructures,” Experimental Physiology, vol. 98, pp. 207–219, 2013. View at Publisher · View at Google Scholar
  47. L. F. Eng, R. S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000),” Neurochemical Research, vol. 25, no. 9-10, pp. 1439–1451, 2000. View at Scopus
  48. N. R. Nichols, D. Agolley, M. Zieba, and N. Bye, “Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration,” Brain Research Reviews, vol. 48, no. 2, pp. 287–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Rozovsky, M. Wei, D. J. Stone et al., “Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin,” Endocrinology, vol. 143, no. 2, pp. 636–646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Menet, M. Giménez Y Ribotta, N. Chauvet et al., “Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression,” Journal of Neuroscience, vol. 21, no. 16, pp. 6147–6158, 2001. View at Scopus
  51. H. Tanaka, A. Katoh, K. Oguro et al., “Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice,” Journal of Neuroscience Research, vol. 67, no. 1, pp. 11–20, 2002. View at Publisher · View at Google Scholar
  52. C. A. Gonçalves, M. C. Leite, and P. Nardin, “Biological and methodological features of the measurement of S100B, a putative marker of brain injury,” Clinical Biochemistry, vol. 41, no. 10-11, pp. 755–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Donato and C. W. Heizmann, “S100B protein in the nervous system and cardiovascular apparatus in normal and pathological conditions,” Cardiovascular Psychiatry and Neurology, vol. 2010, Article ID 929712, 2 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Rasmussen, P. Brassard, H. Adser et al., “Evidence for a release of brain-derived neurotrophic factor from the brain during exercise,” Experimental Physiology, vol. 94, no. 10, pp. 1062–1069, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Chen and A. J. Weber, “Expression of glial fibrillary acidic protein and glutamine synthetase by Müller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor,” GLIA, vol. 38, no. 2, pp. 115–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. W. R. Schäbitz, C. Berger, R. Kollmar et al., “Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia,” Stroke, vol. 35, no. 4, pp. 992–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Ye, G. Wang, H. Wang, and X. Wang, “Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression,” Neuroscience Letters, vol. 503, no. 1, pp. 15–19, 2011. View at Publisher · View at Google Scholar
  58. H. Soya, T. Nakamura, C. C. Deocaris et al., “BDNF induction with mild exercise in the rat hippocampus,” Biochemical and Biophysical Research Communications, vol. 358, no. 4, pp. 961–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Goekint, B. Roelands, E. Heyman, R. Njemini, and R. Meeusen, “Influence of citalopram and environmental temperature on exercise-induced changes in BDNF,” Neuroscience Letters, vol. 494, no. 2, pp. 150–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Cechetti, C. Fochesatto, D. Scopel et al., “Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus,” Brain Research, vol. 1188, no. 1, pp. 182–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. F. B. Ferreira, C. C. Real, A. C. Rodrigues, A. S. Alves, and L. R. G. Britto, “Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity,” Brain Research, vol. 1425, pp. 111–122, 2011. View at Publisher · View at Google Scholar
  62. N. J. Laping, N. R. Nichols, J. R. Day, S. A. Johnson, and C. E. Finch, “Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vivo shows opposite responses to corticosterone in the hippocampus,” Endocrinology, vol. 135, no. 5, pp. 1928–1933, 1994. View at Publisher · View at Google Scholar · View at Scopus
  63. S. R. Robinson, “Changes in the cellular distribution of glutamine synthetase in Alzheimer's disease,” Journal of Neuroscience Research, vol. 66, no. 5, pp. 972–980, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. R. F. Butterworth, “Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy,” Neurochemistry International, vol. 57, no. 4, pp. 383–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. G. C. Brown, “Mechanisms of inflammatory neurodegeneration: INOS and NADPH oxidase,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1119–1121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Liu, J. Yang le, S. J. Fan, H. Jiang, and F. Pan, “Swimming exercise effects on the expression of HSP70 and iNOS in hippocampus and prefrontal cortex in combined stress,” Neuroscience Letters, vol. 476, no. 2, pp. 99–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Y.-H. Sung, S.-C. Kim, H.-P. Hong et al., “Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson's disease mice,” Life Sciences, vol. 91, no. 25-26, pp. 1309–1316, 2012. View at Publisher · View at Google Scholar
  68. Y. H. Leem, Y. I. Lee, H. J. Son, and S. H. Lee, “Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23,” Biochemical and Biophysical Research Communications, vol. 406, no. 3, pp. 359–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Salim, N. Sarraj, M. Taneja, K. Saha, M. V. Tejada-Simon, and G. Chugh, “Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats,” Behavioural Brain Research, vol. 208, no. 2, pp. 545–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. S. Querido and A. W. Sheel, “Regulation of cerebral blood flow during exercise,” Sports Medicine, vol. 37, no. 9, pp. 765–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. L. Goodwin, “Blood glucose regulation during prolonged, submaximal, continuous exercise: a guide for clinicians,” Journal of Diabetes Science and Technology, vol. 4, no. 3, pp. 694–705, 2010. View at Scopus
  72. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer's disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at Publisher · View at Google Scholar · View at Scopus