About this Journal Submit a Manuscript Table of Contents
Neurology Research International
Volume 2011 (2011), Article ID 453179, 8 pages
http://dx.doi.org/10.1155/2011/453179
Review Article

Erythropoietin: Recent Developments in the Treatment of Spinal Cord Injury

1Laboratory of Pharmacology, Department of Medicine, Surgery and Dentistry, University of Milan, Polo H. San Paolo, Via A. di Rudinì 8, 20142 Milan, Italy
2Clinical Pharmacology, IRCCS Humanitas, Via Manzoni 56, Rozzano, 20089 Milan, Italy
3Cerebrovascular Unit, IRCCS, Istituto Neurologico C Besta, Via Celoria 11, 20133 Milan, Italy
4Department of Medicine, Surgery and Dentistry, University of Milan, Polo H. San Paolo, Via A. di Rudinì 8, 20142 Milan, Italy

Received 24 February 2011; Accepted 9 May 2011

Academic Editor: Jeff Bronstein

Copyright © 2011 Stephana Carelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Tator, “Update on the pathophysiology and pathology of acute spinal cord injury,” Brain Pathology, vol. 5, no. 4, pp. 407–413, 1995.
  2. M. D. Norenberg, J. Smith, and A. Marcillo, “The pathology of human spinal cord injury: defining the problems,” Journal of Neurotrauma, vol. 21, no. 4, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. American Association of Neurological Surgeons, “Pharmacological therapy after acute cervical spinal cord injury,” Neurosurgery, vol. 50, no. 3, pp. S63–S72, 2002.
  4. M. Brines and A. Cerami, “Erythropoietin in spinal cord injury,” in Erythropoietin and the Nervous System: Novel Therapeutic Options for Neuroprotection, pp. 147–164, Springer, New York, NY, USA, 2006.
  5. C. Carnot and C. DeFlandre, “Sur l'activite hematopoietique du serum au cours de la regeneration due sang,” Comptes Rendue Hebdomadaires des Séances de Paris, vol. 143, pp. 432–435, 1906.
  6. E. Bonsdorf and E. Jalavisto, “A humoral mechanism in anoxic erythrocytosis,” Acta Physiologica Scandinavica, vol. 16, pp. 150–170, 1948.
  7. J. S. Powell, K. L. Berkner, R. V. Lebo, and J. W. Adamson, “Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6465–6469, 1986. View at Scopus
  8. C. Kasper, “Erythropoietin,” in The Cytokine Handbook, A. W. Thomson and M. T. Lotze, Eds., vol. 1, pp. 149–166, Elsevier, London, UK, 4th edition, 2003.
  9. W. Jelkmann, “Erythropoietin: structure, control of production, and function,” Physiological Reviews, vol. 72, no. 2, pp. 449–489, 1992.
  10. P.-H. Lai, R. Everett, and F.-F. Wang, “Structural characterization of human erythropoietin,” Journal of Biological Chemistry, vol. 261, no. 7, pp. 3116–3121, 1986.
  11. E. Goldwasser, C. K. H. Kung, and J. Eliason, “On the mechanism of erythropoietin induced differentiation. XIII. The role of sialic acid in erythropoietin action,” Journal of Biological Chemistry, vol. 249, no. 13, pp. 4202–4206, 1974.
  12. M. S. Dordal, F. F. Wang, and E. Goldwasser, “The role of carbohydrate in erythropoietin action,” Endocrinology, vol. 116, no. 6, pp. 2293–2299, 1985.
  13. J. C. Winkelmann, L. A. Penny, L. L. Deaven, B. G. Forget, and R. B. Jenkins, “The gene for the human erythropoietin receptor: analysis of the coding sequence and assignment to chromosome 19p,” Blood, vol. 76, no. 1, pp. 24–30, 1990. View at Scopus
  14. G. Grasso, A. Sfacteria, M. Passalacqua et al., “Erythropoietin and erythropoietin receptor expression after experimental spinal cord injury encourages therapy by exogenous erythropoietin,” Neurosurgery, vol. 56, no. 4, pp. 821–826, 2005. View at Publisher · View at Google Scholar
  15. A. Sönmez, B. Kabakçi, E. Vardar et al., “Erythropoietin attenuates neuronal injury and potentiates the expression of pCREB in anterior horn after transient spinal cord ischemia in rats,” Surgical Neurology, vol. 68, no. 3, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. K. P. Conrad, D. F. Benyo, A. Westerhausen-Larsen, and T. M. Miles, “Expression of erythropoietin by the human placenta,” FASEB Journal, vol. 10, no. 7, pp. 760–766, 1996.
  17. C. C. Tan, K. U. Eckardt, and P. J. Ratcliffe, “Organ distribution of erythropoietin messenger RNA in normal and uremic rats,” Kidney International, vol. 40, no. 1, pp. 69–76, 1991.
  18. M. Chikuma, S. Masuda, T. Kobayashi, M. Nagao, and R. Sasaki, “Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus,” American Journal of Physiology, vol. 279, no. 6, pp. E1242–E1248, 2000. View at Scopus
  19. B. B. Beleslin-Cokic, V. P. Cokic, X. Yu, B. B. Weksler, A. N. Schechter, and C. T. Noguchi, “Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells,” Blood, vol. 104, no. 7, pp. 2073–2080, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. A. Nagai, E. Nakagawa, H. B. Choi, K. Hatori, S. Kobayashi, and S. U. Kim, “Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 4, pp. 386–392, 2001.
  21. K. Chin, X. Yu, B. Beleslin-Cokic et al., “Production and processing of erythropoietin receptor transcripts in brain,” Molecular Brain Research, vol. 81, no. 1-2, pp. 29–42, 2000. View at Publisher · View at Google Scholar
  22. J. W. Fisher, “Erythropoietin: physiology and pharmacology update,” Experimental Biology and Medicine, vol. 228, no. 1, pp. 1–14, 2003.
  23. Z. Z. Chong, J.-Q. Kang, and K. Maiese, “Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 5, pp. 503–514, 2002.
  24. M. B. Marrero, R. C. Venema, H. Ma, B. N. Ling, and D. C. Eaton, “Erythropoietin receptor-operated Ca2+ channels: activation by phospholipase C-γ1,” Kidney International, vol. 53, no. 5, pp. 1259–1268, 1998. View at Publisher · View at Google Scholar · View at PubMed
  25. W. Jelkmann, “The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP,” European Journal of Haematology, vol. 69, no. 5-6, pp. 265–274, 2002. View at Publisher · View at Google Scholar
  26. M. Brines and A. Cerami, “Emerging biological roles for erythropoietin in the nervous system,” Nature Reviews Neuroscience, vol. 6, no. 6, pp. 484–494, 2005. View at Publisher · View at Google Scholar
  27. M. Brines, G. Grasso, F. Fiordaliso et al., “Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14907–14912, 2004. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Erbayraktar, G. Grasso, A. Sfacteria et al., “Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6741–6746, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Shingo, S. Todd Sorokan, T. Shimazaki, and S. Weiss, “Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells,” Journal of Neuroscience, vol. 21, no. 24, pp. 9733–9743, 2001. View at Scopus
  30. C. T. Noguchi, P. Asavaritikrai, R. Teng, and Y. Jia, “Role of erythropoietin in the brain,” Critical Reviews in Oncology/Hematology, vol. 64, no. 2, pp. 159–171, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. S. Masuda, M. Nagao, K. Takahata et al., “Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells,” Journal of Biological Chemistry, vol. 268, no. 15, pp. 11208–11216, 1993. View at Scopus
  32. C. Wiessner, P. R. Allegrini, D. Ekatodramis, U. R. Jewell, T. Stallmach, and M. Gassmann, “Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 7, pp. 857–864, 2001. View at Scopus
  33. G. Acs, P. Acs, S. M. Beckwith et al., “Erythropoietin and erythropoietin receptor expression in human cancer,” Cancer Research, vol. 61, no. 9, pp. 3561–3565, 2001.
  34. B. Leyland-Jones and J. A. O'Shaughnessy, “Erythropoietin as a critical component of breast cancer therapy: survival, synergistic, and cognitive applications,” Seminars in Oncology, vol. 30, no. 5, supplement 16, pp. 174–184, 2003.
  35. R. Yamaji, T. Okada, M. Moriya et al., “Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA,” European Journal of Biochemistry, vol. 239, no. 2, pp. 494–500, 1996. View at Scopus
  36. A. Mammis, T. K. McIntosh, and A. H. Maniker, “Erythropoietin as a neuroprotective agent in traumatic brain injury. Review,” Surgical Neurology, vol. 71, no. 5, pp. 527–531, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Digicaylioglu and S. A. Lipton, “Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades,” Nature, vol. 412, no. 6847, pp. 641–647, 2001. View at Publisher · View at Google Scholar · View at PubMed
  38. E. Morishita, S. Masuda, M. Nagao, Y. Yasuda, and R. Sasaki, “Erythropoetin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death,” Neuroscience, vol. 76, no. 1, pp. 105–116, 1996. View at Publisher · View at Google Scholar
  39. M. Hasselblatt, H. Ehrenreich, and A. L. Sirén, “The brain erythropoietin system and its potential for therapeutic exploitation in brain disease,” Journal of Neurosurgical Anesthesiology, vol. 18, no. 2, pp. 132–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Villa, J. Van Beek, A. K. Larsen et al., “Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 3, pp. 552–563, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. A. Mahmood, D. Lu, C. Qu et al., “Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin,” Journal of Neurosurgery, vol. 107, no. 2, pp. 392–397, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. Y. Wang, Z. G. Zhang, K. Rhodes et al., “Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia,” British Journal of Pharmacology, vol. 151, no. 8, pp. 1377–1384, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. G. Grasso, A. Sfacteria, S. Erbayraktar et al., “Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative,” Journal of Neurosurgery: Spine, vol. 4, no. 4, pp. 310–318, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Nangaku, Y. Izuhara, S. Takizawa et al., “A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2548–2554, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. M. A. Puchowicz, J. L. Zechel, J. Valerio et al., “Neuroprotection in diet-induced ketotic rat brain after focal ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 12, pp. 1907–1916, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. M. Suzuki, M. Suzuki, Y. Kitamura et al., “β-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia,” Japanese Journal of Pharmacology, vol. 89, no. 1, pp. 36–43, 2002. View at Publisher · View at Google Scholar
  47. W. Jelkmann, “'O', erythropoietin carbamoylation versus carbamylation,” Nephrology Dialysis Transplantation, vol. 23, no. 9, p. 3033, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. G. Marfia, L. Madaschi, F. Marra et al., “Adult neural precursors isolated from post mortem brain yield mostly neurons: an erythropoietin-dependent process,” Neurobiology of Disease, vol. 43, no. 1, pp. 86–98, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. M. Sakanaka, T. C. Wen, S. Matsuda et al., “In vivo evidence that erythropoietin protects neurons from ischemic damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4635–4640, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. M. A. Catania, M. C. Marciano, A. Parisi et al., “Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils,” European Journal of Pharmacology, vol. 437, no. 3, pp. 147–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Zhang, A. P. Signore, Z. Zhou, S. Wang, G. Cao, and J. Chen, “Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms,” Journal of Neuroscience Research, vol. 83, no. 7, pp. 1241–1251, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. M. Bernaudin, H. H. Marti, S. Roussel et al., “A potential role for erythropoietin in focal permanent cerebral ischemia in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 6, pp. 643–651, 1999. View at Scopus
  53. W. A. Banks, N. L. Jumbe, C. L. Farrell, M. L. Niehoff, and A. C. Heatherington, “Passage of erythropoietic agents across the blood-brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa,” European Journal of Pharmacology, vol. 505, no. 1–3, pp. 93–101, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. R. J. Boado, E. K.-W. Hui, J. Z. Lu, and W. M. Pardridge, “Drug targeting of erythropoietin across the primate blood-brain barrier with an IgG molecular trojan horse,” Journal of Pharmacology and Experimental Therapeutics, vol. 333, no. 3, pp. 961–969, 2010. View at Publisher · View at Google Scholar · View at PubMed
  55. H. Ehrenreich, K. Weissenborn, H. Prange et al., “Recombinant human erythropoietin in the treatment of acute ischemic stroke,” Stroke, vol. 40, no. 12, pp. e647–e656, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. A. Fu, E. K.-W. Hui, J. Z. Lu, R. J. Boado, and W. M. Pardridge, “Neuroprotection in experimental stroke in the rat with an IgG-erythropoietin fusion protein,” Brain Research, vol. 1360, pp. 193–197, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. W. M. Pardridge, Y. -S. Kang, J. L. Buciak, and J. Yang, “Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate,” Pharmaceutical Research, vol. 12, no. 6, pp. 807–816, 1995.
  58. R. J. Boado and W. M. Pardridge, “Comparison of blood-brain barrier transport of Glial-Derived Neurotrophic Factor (GDNF) and an IgG-GDNF fusion protein in the rhesus monkey,” Drug Metabolism and Disposition, vol. 37, no. 12, pp. 2299–2304, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. Q.-H. Zhou, R. J. Boado, J. Z. Lu, E. K.-W. Hui, and W. M. Pardridge, “Re-engineering erythropoietin as an IgG fusion protein that penetrates the blood-brain barrier in the mouse,” Molecular Pharmaceutics, vol. 7, no. 6, pp. 2148–2155, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. Q. -H. Zhou, E. K.-W. Hui, J. Z. Lu, R. J. Boado, and W. M. Pardridge, “Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse,” Brain Research, vol. 1382, pp. 315–320, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. M. L. Brines, P. Ghezzi, S. Keenan et al., “Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10526–10531, 2000. View at Scopus
  62. A. Gorio, N. Gokmen, S. Erbayraktar et al., “Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9450–9455, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. A. Gorio, L. Madaschi, B. Di Stefano et al., “Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 45, pp. 16379–16384, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Y. Arishima, T. Setoguchi, I. Yamaura, K. Yone, and S. Komiya, “Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats,” Spine, vol. 31, no. 21, pp. 2432–2438, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. B. O. Boran, A. Colak, and M. Kutlay, “Erythropoietin enhances neurological recovery after experimental spinal cord injury,” Restorative Neurology and Neuroscience, vol. 23, no. 5-6, pp. 341–345, 2005.
  66. F. Fumagalli, L. Madaschi, P. Brenna et al., “Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: comparison with methylprednisolone,” European Journal of Pharmacology, vol. 578, no. 1, pp. 19–27, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. E. Kaptanoglu, I. Solaroglu, O. Okutan, H. S. Surucu, F. Akbiyik, and E. Beskonakli, “Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings,” Neurosurgical Review, vol. 27, no. 2, pp. 113–120, 2004. View at Publisher · View at Google Scholar · View at PubMed
  68. O. Okutan, I. Solaroglu, E. Beskonakli, and Y. Taskin, “Recombinant human erythropoietin decreases myeloperoxidase and caspase-3 activity and improves early functional results after spinal cord injury in rats,” Journal of Clinical Neuroscience, vol. 14, no. 4, pp. 364–368, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. L. Vitellaro-Zuccarello, S. Mazzetti, L. Madaschi, P. Bosisio, A. Gorio, and S. De Biasi, “Erythropoietin-mediated preservation of the white matter in rat spinal cord injury,” Neuroscience, vol. 144, no. 3, pp. 865–877, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. L. Vitellaro-Zuccarello, S. Mazzetti, L. Madaschi et al., “Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury,” Neuroscience, vol. 151, no. 2, pp. 452–466, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. R. Faulkner, J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan, and M. V. Sofroniew, “Reactive astrocytes protect tissue and preserve function after spinal cord injury,” Journal of Neuroscience, vol. 24, no. 9, pp. 2143–2155, 2004. View at Publisher · View at Google Scholar · View at PubMed
  72. http://www.clinicaltrial.gov/.
  73. L. Wang, G. Z. Zheng, S. R. Gregg et al., “The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 32462–32470, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. L. Wang, M. Chopp, S. R. Gregg et al., “Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 7, pp. 1361–1368, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. A.-K. Giese, J. Frahm, R. Hübner et al., “Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells,” BMC Cell Biology, vol. 11, article 94, 2010. View at Publisher · View at Google Scholar · View at PubMed