About this Journal Submit a Manuscript Table of Contents
Neurology Research International
Volume 2011 (2011), Article ID 563784, 7 pages
http://dx.doi.org/10.1155/2011/563784
Review Article

Huntington's Disease: An Immune Perspective

1Centre for Infection, Immunity and Disease Mechanisms, Biosciences School of Health Sciences and Social Care, Brunel University, West London UB8 3PH, UK
2Centre of Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute for Advanced Study, Secunderabad, Andhra Pradesh, India
3Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
4Unit of Neurology, Department of Neurological Disorders, Santa Chiara Hospital, Largo Medaglie d'oro 1, 38100 Trento, Italy

Received 17 November 2010; Revised 31 March 2011; Accepted 12 May 2011

Academic Editor: Mohammed Rachidi

Copyright © 2011 Annapurna Nayak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Huntington, “On Chorea,” Medical and Surgical Reporter of Philadelphia, vol. 26, pp. 317–321, 1872.
  2. F. O. Walker, “Huntington's disease,” Lancet, vol. 369, no. 9557, pp. 218–228, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. E. Purdon, E. Mohr, V. Ilivitsky, and B. D. Jones, “Huntington's disease: pathogenesis, diagnosis and treatment,” Journal of Psychiatry and Neuroscience, vol. 19, no. 5, pp. 359–367, 1994. View at Scopus
  4. A. L. Orr, S. Li, C. E. Wang et al., “N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking,” Journal of Neuroscience, vol. 28, no. 11, pp. 2783–2792, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Reiner, I. Dragatsis, S. Zeitlin, and D. Goldowitz, “Wild-type huntingtin plays a role in brain development and neuronal survival,” Molecular Neurobiology, vol. 28, no. 3, pp. 259–275, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. P. Duyao, A. B. Auerbach, A. Ryan et al., “Inactivation of the mouse Huntington's disease gene homolog Hdh,” Science, vol. 269, no. 5222, pp. 407–410, 1995. View at Scopus
  7. A. Reiner, N. Del Mar, C. A. Meade et al., “Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice,” Journal of Neuroscience, vol. 21, no. 19, pp. 7608–7619, 2001. View at Scopus
  8. J. B. Penney Jr., J. P. Vonsattel, M. E. MacDonald, J. F. Gusella, and R. H. Myers, “CAG repeat number governs the development rate of pathology in huntington's disease,” Annals of Neurology, vol. 41, no. 5, pp. 689–692, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. DiFiglia, E. Sapp, K. O. Chase et al., “Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain,” Science, vol. 277, no. 5334, pp. 1990–1993, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. Rubinsztein, “Lessons from animal models of Huntington's disease,” Trends in Genetics, vol. 18, no. 4, pp. 202–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Pavese, A. Gerhard, Y. F. Tai et al., “Microglial activation correlates with severity in Huntington disease: a clinical and PET study,” Neurology, vol. 66, no. 11, pp. 1638–1643, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. F. Tai, N. Pavese, A. Gerhard et al., “Microglial activation in presymptomatic Huntington's disease gene carriers,” Brain, vol. 130, no. 7, pp. 1759–1766, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. Sathasivam, C. Hobbs, M. Turmaine et al., “Formation of polyglutamine inclusions in non-CNS tissue,” Human Molecular Genetics, vol. 8, no. 5, pp. 813–822, 1999. View at Scopus
  14. R. B. Banati, “Visualising microglial activation in vivo,” GLIA, vol. 40, no. 2, pp. 206–217, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. U. Kim and J. de Vellis, “Microglia in health and disease,” Journal of Neuroscience Research, vol. 81, no. 3, pp. 302–313, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. W. Zhu, H. Zheng, X. Shao, W. Wang, Q. Yao, and Z. Li, “Excitotoxicity of TNFα derived from KA activated microglia on hippocampal neurons in vitro and in vivo,” Journal of Neurochemistry, vol. 114, no. 2, pp. 386–396, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. X. Wang, S. Chen, G. Ma, M. Ye, and G. Lu, “Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration,” Mechanisms of Ageing and Development, vol. 126, no. 12, pp. 1241–1254, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. M. Bonifati and U. Kishore, “Role of complement in neurodegeneration and neuroinflammation,” Molecular Immunology, vol. 44, no. 5, pp. 999–1010, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. P. Vonsattel, R. H. Myers, and T. J. Stevens, “Neuropathological classification of Huntington's disease,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 559–577, 1985. View at Scopus
  20. A. J. Milnerwood and L. A. Raymond, “Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease,” Trends in Neurosciences, vol. 33, no. 11, pp. 513–523, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. E. Sapp, K. B. Kegel, N. Aronin et al., “Early and progressive accumulation of reactive microglia in the Huntington disease brain,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 2, pp. 161–172, 2001.
  22. M. Björkqvist, E. J. Wild, J. Thiele et al., “A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1869–1877, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. S. K. Singhrao, J. W. Neal, B. P. Morgan, and P. Gasque, “Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease,” Experimental Neurology, vol. 159, no. 2, pp. 362–376, 1999. View at Publisher · View at Google Scholar · View at PubMed
  24. N. S. K. Haque, P. Borghesani, and O. Isacson, “Therapeutic strategies for Huntington's disease based on a molecular understanding of the disorder,” Molecular Medicine Today, vol. 3, no. 4, pp. 175–183, 1997. View at Publisher · View at Google Scholar
  25. G. J. Arlaud, C. Gaboriaud, N. M. Thielens, M. Budayova-Spano, V. Rossi, and J. C. Fontecilla-Camps, “Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity,” Molecular Immunology, vol. 39, no. 7-8, pp. 383–394, 2002. View at Publisher · View at Google Scholar
  26. U. Kishore and K. B. Reid, “C1q: structure, function, and receptors,” Immunopharmacology, vol. 49, no. 1-2, pp. 159–170, 2000. View at Scopus
  27. T. Fujita, M. Matsushita, and Y. Endo, “The lectin-complement pathway—its role in innate immunity and evolution,” Immunological Reviews, vol. 198, pp. 185–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Rus, C. Cudrici, S. David, and F. Niculescu, “The complement system in central nervous system diseases,” Autoimmunity, vol. 39, no. 5, pp. 395–402, 2006. View at Publisher · View at Google Scholar · View at PubMed
  29. B. J. C. Janssen, E. G. Huizinga, H. C. A. Raaijmakers et al., “Structures of complement component C3 provide insights into the function and evolution of immunity,” Nature, vol. 437, no. 7058, pp. 505–511, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. S. D. Webster, A. J. Yang, L. Margol, W. Garzon-Rodriguez, C. G. Glabe, and A. J. Tenner, “Complement component C1q modulates the phagocytosis of Aβ by microglia,” Experimental Neurology, vol. 161, no. 1, pp. 127–138, 2000. View at Publisher · View at Google Scholar · View at PubMed
  31. P. Vanguri and M. L. Shin, “Activation of complement by myelin: identification of C1-binding proteins of human myelin from central nervous tissue,” Journal of Neurochemistry, vol. 46, no. 5, pp. 1535–1541, 1986.
  32. A. Dalrymple, E. J. Wild, R. Joubert et al., “Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates,” Journal of Proteome Research, vol. 6, no. 7, pp. 2833–2840, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. M. Thambisetty, A. Simmons, L. Velayudhan et al., “Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease,” Archives of General Psychiatry, vol. 67, no. 7, pp. 739–748, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. Du, K. R. Bales, R. C. Dodel et al., “α2-macroglobulin attenuates β-amyloid peptide 1-40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons,” Journal of Neurochemistry, vol. 70, no. 3, pp. 1182–1188, 1998.
  35. T. C. Frank-Cannon, L. T. Alto, F. E. McAlpine, and M. G. Tansey, “Does neuroinflammation fan the flame in neurodegenerative diseases?” Molecular Neurodegeneration, vol. 4, no. 1, article 47, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. W. J. Streit, R. E. Mrak, and W. S. T. Griffin, “Microglia and neuroinflammation: a pathological perspective,” Journal of Neuroinflammation, vol. 1, article 14, 2004. View at Publisher · View at Google Scholar · View at PubMed
  37. Y. F. Tai, N. Pavese, A. Gerhard et al., “Imaging microglial activation in Huntington's disease,” Brain Research Bulletin, vol. 72, no. 2-3, pp. 148–151, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. G. Hoffner, S. Souès, and P. Djian, “Aggregation of expanded huntingtin in the brains of patients with Huntington disease,” Prion, vol. 1, no. 1, pp. 26–31, 2007.
  39. J. Y. Shin, Z. H. Fang, Z. X. Yu, C. E. Wang, S. H. Li, and X. J. Li, “Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity,” Journal of Cell Biology, vol. 171, no. 6, pp. 1001–1012, 2005. View at Publisher · View at Google Scholar · View at PubMed
  40. J. Bradford, J. Y. Shin, M. Roberts et al., “Mutant huntingtin in glial cells exacerbates neurological symptoms of huntington disease mice,” Journal of Biological Chemistry, vol. 285, no. 14, pp. 10653–10661, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. N. J. Maragakis and J. D. Rothstein, “Glutamate transporters in neurologic disease,” Archives of Neurology, vol. 58, no. 3, pp. 365–370, 2001.
  42. D. J. Klionsky and Y. Ohsumi, “Vacuolar import of proteins and organelles from the cytoplasm,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 1–32, 1999. View at Publisher · View at Google Scholar · View at PubMed
  43. K. B. Kegel, M. Kim, E. Sapp et al., “Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy,” Journal of Neuroscience, vol. 20, no. 19, pp. 7268–7278, 2000.
  44. B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002.
  45. M. Martinez-Vicente, Z. Talloczy, E. Wong et al., “Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease,” Nature Neuroscience, vol. 13, no. 5, pp. 567–576, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. S. Sarkar and D. C. Rubinsztein, “Huntington's disease: degradation of mutant huntingtin by autophagy,” FEBS Journal, vol. 275, no. 17, pp. 4263–4270, 2008. View at Publisher · View at Google Scholar · View at PubMed