About this Journal Submit a Manuscript Table of Contents
Neurology Research International
Volume 2012 (2012), Article ID 432780, 5 pages
http://dx.doi.org/10.1155/2012/432780
Review Article

RNA-Binding Proteins in Amyotrophic Lateral Sclerosis and Neurodegeneration

1Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA

Received 26 January 2012; Accepted 26 February 2012

Academic Editor: Jeff Bronstein

Copyright © 2012 Scott E. Ugras and James Shorter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lagier-Tourenne and D. W. Cleveland, “Rethinking ALS: the FUS about TDP-43,” Cell, vol. 136, no. 6, pp. 1001–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Ilieva, M. Polymenidou, and D. W. Cleveland, “Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond,” Journal of Cell Biology, vol. 187, no. 6, pp. 761–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Neumann, D. M. Sampathu, L. K. Kwong et al., “Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Science, vol. 314, no. 5796, pp. 130–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. J. Kwiatkowski Jr., D. A. Bosco, A. L. LeClerc et al., “Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis,” Science, vol. 323, no. 5918, pp. 1205–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Vance, B. Rogelj, T. Hortobagyi et al., “Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6,” Science, vol. 323, no. 5918, pp. 1208–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Kabashi, P. N. Valdmanis, P. Dion et al., “TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis,” Nature Genetics, vol. 40, no. 5, pp. 572–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Sreedharan, I. P. Blair, V. B. Tripathi et al., “TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis,” Science, vol. 319, no. 5870, pp. 1668–1672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Buratti and F. E. Baralle, “The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation,” RNA Biology, vol. 7, no. 4, pp. 420–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kawahara and A. Mieda-Sato, “TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 9, pp. 3347–3352, 2012. View at Publisher · View at Google Scholar
  10. S. da Cruz and D. W. Cleveland, “Understanding the role of TDP-43 and FUS/TLS in ALS and beyond,” Current Opinion in Neurobiology, vol. 21, no. 6, pp. 904–919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. B. Lee, V. M. Lee, and J. Q. Trojanowski, “Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration,” Nature Reviews Neuroscience, vol. 13, no. 1, pp. 38–50, 2012. View at Publisher · View at Google Scholar
  12. D. W. Colby and S. B. Prusiner, “De novo generation of prion strains,” Nature Reviews Microbiology, vol. 9, no. 11, pp. 771–777, 2011. View at Publisher · View at Google Scholar
  13. M. Cushman, B. S. Johnson, O. D. King, A. D. Gitler, and J. Shorter, “Prion-like disorders: blurring the divide between transmissibility and infectivity,” Journal of Cell Science, vol. 123, no. 8, pp. 1191–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Shorter, “Emergence and natural selection of drug-resistant prions,” Molecular Biosystems, vol. 6, no. 7, pp. 1115–1130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Shorter and S. Lindquist, “Prions as adaptive conduits of memory and inheritance,” Nature Reviews Genetics, vol. 6, no. 6, pp. 435–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. O. D. King, A. D. Gitler, and J. Shorter, “The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease,” Brain Research. View at Publisher · View at Google Scholar
  17. M. Polymenidou and D. W. Cleveland, “The seeds of neurodegeneration: prion-like spreading in ALS,” Cell, vol. 147, no. 3, pp. 498–508, 2011.
  18. A. D. Gitler and J. Shorter, “RNA-binding proteins with prion-like domains in ALS and FTLD-U,” Prion, vol. 5, no. 3, pp. 179–187, 2011.
  19. R. A. Fuentealba, M. Udan, S. Bell et al., “Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26304–26314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Udan and R. H. Baloh, “Implications of the prion-related Q/N domains in TDP-43 and FUS,” Prion, vol. 5, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. B. S. Johnson, D. Snead, J. J. Lee, J. M. McCaffery, J. Shorter, and A. D. Gitler, “TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity,” Journal of Biological Chemistry, vol. 284, no. 30, pp. 20329–20339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Sun, Z. Diaz, X. Fang et al., “Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS,” PLoS Biology, vol. 9, no. 4, Article ID e1000614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Furukawa, K. Kaneko, S. Watanabe, K. Yamanaka, and N. Nukina, “A seeding reaction recapitulates intracellular formation of sarkosyl-insoluble transactivation response element (TAR) dna-binding protein-43 inclusions,” Journal of Biological Chemistry, vol. 286, no. 21, pp. 18664–18672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Ravits and A. R. La Spada, “ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration,” Neurology, vol. 73, no. 10, pp. 805–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Couthouis, M. P. Hart, J. Shorter, et al., “A yeast functional screen predicts new candidate ALS disease genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 20881–20890, 2011.
  26. A. D. Gitler, “Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease?” Neurosignals, vol. 16, no. 1, pp. 52–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Armakola, M. P. Hart, and A. D. Gitler, “TDP-43 toxicity in yeast,” Methods, vol. 53, no. 3, pp. 238–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Braun, C. Sommer, D. Carmona-Gutierrez et al., “Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast,” Journal of Biological Chemistry, vol. 286, no. 22, pp. 19958–19972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. B. S. Johnson, J. M. McCaffery, S. Lindquist, and A. D. Gitler, “A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6439–6444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Kryndushkin, R. B. Wickner, and F. Shewmaker, “FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis,” Protein and Cell, vol. 2, no. 3, pp. 223–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Ju, D. F. Tardiff, H. Han et al., “A yeast model of FUS/TLS-dependent cytotoxicity,” PLoS Biology, vol. 9, no. 4, Article ID e1001052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Fushimi, C. Long, N. Jayaram, X. Chen, L. Li, and J. Y. Wu, “Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy,” Protein and Cell, vol. 2, no. 2, pp. 141–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Elden, H. J. Kim, M. P. Hart et al., “Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS,” Nature, vol. 466, no. 7310, pp. 1069–1075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. F. Tardiff, M. L. Tucci, K. A. Caldwell, G. A. Caldwell, and S. Lindquist, “Different 8-hydroxyquinolines protect models of TDP-43 protein, alpha-synuclein, and polyglutamine proteotoxicity through distinct mechanisms,” Journal of Biological Chemistry, vol. 287, no. 6, pp. 4107–4120, 2012.
  35. B. J. Lee, A. E. Cansizoglu, K. E. Suel, T. H. Louis, Z. Zhang, and Y. M. Chook, “Rules for nuclear localization sequence recognition by karyopherin β2,” Cell, vol. 126, no. 3, pp. 543–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Dormann, R. Rodde, D. Edbauer et al., “ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import,” EMBO Journal, vol. 29, no. 16, pp. 2841–2857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Neumann, E. Bentmann, D. Dormann, et al., “FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations,” Brain, vol. 134, no. Pt9, pp. 2595–2609, 2011.
  38. J. I. Hoell, E. L Larsson, S. Runge, et al., “RNA targets of wild-type and mutant FET family proteins,” Nature Structural and Molecular Biology, vol. 18, no. 12, pp. 1428–1431, 2011.
  39. M. Polymenidou, C. Lagier-Tourenne, K. R. Hutt et al., “Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43,” Nature Neuroscience, vol. 14, no. 4, pp. 459–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. M. Ayala, L. de Conti, S. E. Avendano-Vazquez et al., “TDP-43 regulates its mRNA levels through a negative feedback loop,” The EMBO Journal, vol. 30, no. 2, pp. 277–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. R. Tollervey, T. Curk, B. Rogelj et al., “Characterizing the RNA targets and position-dependent splicing regulation by TDP-43,” Nature Neuroscience, vol. 14, no. 4, pp. 452–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve, et al., “Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS,” Neuron, vol. 72, no. 2, pp. 245–256, 2011.
  43. A. E. Renton, E. Majounie, A. Waite, et al., “A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD,” Neuron, vol. 72, no. 2, pp. 257–268, 2011.