About this Journal Submit a Manuscript Table of Contents
Neurology Research International
Volume 2013 (2013), Article ID 256713, 6 pages
http://dx.doi.org/10.1155/2013/256713
Review Article

Evidence-Based Cerebral Vasospasm Surveillance

Vanderbilt University Medical Center, Department of Neurological Surgery, T-4224 Medical Center North, Nashville, TN 37212, USA

Received 24 November 2012; Accepted 20 May 2013

Academic Editor: William J. Mack

Copyright © 2013 Heather Kistka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. T. King, “Epidemiology of aneurysmal subarachnoid hemorrhage,” Neuroimaging Clinics of North America, vol. 7, no. 4, pp. 659–668, 1997. View at Scopus
  2. N. F. Kassell, T. Sasaki, A. R. T. Colohan, and G. Nazar, “Cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Stroke, vol. 16, no. 4, pp. 562–572, 1985. View at Scopus
  3. M. D. I. Vergouwen and Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage, “Vasospasm versus delayed cerebral ischemia as an outcome event in clinical trials and observational studies,” Neurocritical Care, vol. 15, no. 2, pp. 308–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. T. Hughes and P. M. Schianchi, “Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 48, no. 4, pp. 515–525, 1978. View at Scopus
  5. J. A. Frontera, A. Fernandez, J. M. Schmidt et al., “Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?” Stroke, vol. 40, no. 6, pp. 1963–1968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. D. I. Vergouwen, M. Vermeulen, J. van Gijn et al., “Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group,” Stroke, vol. 41, no. 10, pp. 2391–2395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Muizelaar and D. P. Becker, “Induced hypertension for the treatment of cerebral ischemia after subarachnoid hemorrhage. Direct effect on cerebral blood flow,” Surgical Neurology, vol. 25, no. 4, pp. 317–325, 1986. View at Scopus
  8. J. M. Darby, H. Yonas, E. C. Marks, S. Durham, R. W. Snyder, and E. M. Nemoto, “Acute cerebral blood flow response to dopamine-induced hypertension after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 80, no. 5, pp. 857–864, 1994. View at Scopus
  9. S. Deb, A. J. Gogos, K. J. Drummond, and P. J. Teddy, “The role of transcranial Doppler ultrasound monitoring in patients with aneurysmal subarachnoid haemorrhage,” Journal of Clinical Neuroscience, vol. 19, no. 7, pp. 950–955, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lysakowski, B. Walder, M. C. Costanza, and M. R. Tramèr, “Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review,” Stroke, vol. 32, no. 10, pp. 2292–2298, 2001. View at Scopus
  11. E. Carrera, J. M. Schmidt, M. Oddo et al., “Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage,” Neurosurgery, vol. 65, no. 2, pp. 316–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. W. Washington, G. J. Zipfel, and Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage, “Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature,” Neurocritical Care, vol. 15, no. 2, pp. 312–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Gonzalez, W. J. Boscardin, T. Glenn, F. Vinuela, and N. A. Martin, “Vasospasm probability index: a combination of transcranial Doppler velocities, cerebral blood flow, and clinical risk factors to predict cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 107, no. 6, pp. 1101–1112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Nakae, H. Yokota, D. Yoshida, and A. Teramoto, “Transcranial Doppler ultrasonography for diagnosis of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mean blood flow velocity ratio of the ipsilateral and contralateral middle cerebral arteries,” Neurosurgery, vol. 69, no. 4, pp. 876–883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. Dankbaar, N. K. de Rooij, B. K. Velthuis, C. J. M. Frijns, G. J. E. Rinkel, and I. C. van der Schaaf, “Diagnosing delayed cerebral ischemia with different CT modalities in patients with subarachnoid hemorrhage with clinical deterioration,” Stroke, vol. 40, no. 11, pp. 3493–3498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. P. Killeen, A. I. Mushlin, C. E. Johnson et al., “Comparison of CT perfusion and digital subtraction angiography in the evaluation of delayed cerebral ischemia,” Academic Radiology, vol. 18, no. 9, pp. 1094–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Sanelli, I. Ugorec, C. E. Johnson et al., “Using quantitative CT perfusion for evaluation of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage,” American Journal of Neuroradiology, vol. 32, no. 11, pp. 2047–2053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. E. D. Greenberg, R. Gold, M. Reichman et al., “Diagnostic accuracy of CT angiography and CT perfusion for cerebral vasospasm: a meta-analysis,” American Journal of Neuroradiology, vol. 31, no. 10, pp. 1853–1860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. C. Sanelli, A. Jou, R. Gold et al., “Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm,” Neuroradiology, vol. 53, no. 6, pp. 425–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. C. Sanelli, N. Anumula, C. E. Johnson et al., “Evaluating CT perfusion using outcome measures of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage,” American Journal of Neuroradiology, vol. 34, no. 2, pp. 292–298, 2013. View at Publisher · View at Google Scholar
  21. G. Rordorf, W. J. Koroshetz, W. A. Copen et al., “Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage,” Stroke, vol. 30, no. 3, pp. 599–605, 1999. View at Scopus
  22. A. G. Sorensen, W. A. Copen, L. Østergaard et al., “Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time,” Radiology, vol. 210, no. 2, pp. 519–527, 1999. View at Scopus
  23. S. P. Lad, R. Guzman, M. E. Kelly et al., “Cerebral perfusion imaging in vasospasm,” Neurosurgical Focus, vol. 21, no. 3, p. E7, 2006. View at Scopus
  24. W. J. Powers, R. L. Grubb, and R. P. Baker, “Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm; determination by positron emission tomography,” Journal of Neurosurgery, vol. 62, no. 4, pp. 539–546, 1985. View at Scopus
  25. S. Kawamura, I. Sayama, N. Yasui, and K. Uemura, “Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage,” Acta Neurochirurgica, vol. 114, no. 1-2, pp. 12–15, 1992. View at Scopus
  26. R. C. Walovitch, E. H. Cheesman, L. J. Maheu, and K. M. Hall, “Studies of the retention mechanism of the brain perfusion imaging agent 99mTc-bicisate (99mTc-ECD),” Journal of Cerebral Blood Flow and Metabolism, vol. 14, no. 1, pp. S4–S11, 1994. View at Scopus
  27. S. M. Davis, J. T. Andrews, M. Lichtenstein, S. C. Rossiter, A. H. Kaye, and J. Hopper, “Correlations between cerebral arterial velocities, blood flow, and delayed ischemia after subarachnoid hemorrhage,” Stroke, vol. 23, no. 4, pp. 492–497, 1992. View at Scopus
  28. S. Davis, J. Andrews, M. Lichtenstein et al., “A single-photon emission computed tomography study of hypoperfusion after subarachnoid hemorrhage,” Stroke, vol. 21, no. 2, pp. 252–259, 1990. View at Scopus
  29. K. S. Firlik, A. M. Kaufmann, A. D. Firlik, C. A. Jungreis, and H. Yonas, “Intra-arterial papaverine for the treatment of cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Surgical Neurology, vol. 51, no. 1, pp. 66–74, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Yonas, L. Sekhar, D. W. Johnson, and D. Gur, “Determination of irreversible ischemia by xenon-enhanced computed tomographic monitoring of cerebral blood flow in patients with symptomatic vasospasm,” Neurosurgery, vol. 24, no. 3, pp. 368–372, 1989. View at Scopus
  31. G. J. Bouma and J. P. Muizelaar, “Evaluation of regional cerebral blood flow in acute head injury by stable xenon-enhanced computerized tomography,” Acta Neurochirurgica, vol. 59, pp. 34–40, 1993. View at Scopus
  32. J. Claassen, S. A. Mayer, and L. J. Hirsch, “Continuous EEG monitoring in patients with subarachnoid hemorrhage,” Journal of Clinical Neurophysiology, vol. 22, no. 2, pp. 92–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Vespa, M. R. Nuwer, C. Juhász et al., “Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 6, pp. 607–615, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. F. T. Charbel, X. Du, W. E. Hoffman, and J. I. Ausman, “Brain tissue PO2, PCO2, and pH during cerebral vasospasm,” Surgical Neurology, vol. 54, no. 6, pp. 432–437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Khaldi, A. Zauner, M. Reinert, J. J. Woodward, and M. R. Bullock, “Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage,” Neurosurgery, vol. 49, no. 1, pp. 33–40, 2001. View at Scopus
  36. M. Jaeger, M. U. Schuhmann, M. Soehle, C. Nagel, and J. Meixensberger, “Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction,” Stroke, vol. 38, no. 3, pp. 981–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Barth, J. Woitzik, C. Weiss et al., “Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH,” Neurocritical Care, vol. 12, no. 2, pp. 234–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Enblad, J. Valtysson, J. Andersson et al., “Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 4, pp. 637–644, 1996. View at Scopus
  39. L. Persson, J. Valtysson, P. Enblad et al., “Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 84, no. 4, pp. 606–616, 1996. View at Scopus
  40. M. K. Schulz, L. P. Wang, M. Tange, and P. Bjerre, “Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 93, no. 5, pp. 808–814, 2000. View at Scopus
  41. O. G. Nilsson, L. Brandt, U. Ungerstedt, and H. Säveland, “Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration,” Neurosurgery, vol. 45, no. 5, pp. 1176–1184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. A. W. Unterberg, O. W. Sakowitz, A. S. Sarrafzadeh, G. Benndorf, and W. R. Lanksch, “Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 94, no. 5, pp. 740–749, 2001. View at Scopus
  43. F. Staub, R. Graf, P. Gabel, M. Köchling, N. Klug, and W. Heiss, “Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage,” Neurosurgery, vol. 47, no. 5, pp. 1106–1116, 2000. View at Scopus
  44. L. A. Steiner and P. J. D. Andrews, “Monitoring the injured brain: ICP and CBF,” British Journal of Anaesthesia, vol. 97, no. 1, pp. 26–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Vajkoczy, P. Horn, C. Thome, E. Munch, and P. Schmiedek, “Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 98, no. 6, pp. 1227–1234, 2003. View at Scopus
  46. A. von Helden, G. H. Schneider, A. Unterberg, and W. R. Lanksch, “Monitoring of jugular venous oxygen saturation in comatose patients with subarachnoid haemorrhage and intracerebral haematomas,” Acta Neurochirurgica, vol. 59, pp. 102–106, 1993. View at Scopus
  47. N. S. Heran, S. J. Hentschel, and B. D. Toyota, “Jugular bulb oximetry for prediction of vasospasm following subarachnoid hemorrhage,” Canadian Journal of Neurological Sciences, vol. 31, no. 1, pp. 80–86, 2004. View at Scopus
  48. T. Mutoh, T. Ishikawa, A. Suzuki, and N. Yasui, “Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage,” Neurocritical Care, vol. 13, no. 3, pp. 331–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W. S. Poon, G. K. C. Wong, and S. C. P. Ng, “The quantitative time-resolved near infrared spectroscopy (TR-NIRs) for bedside cerebrohemodynamic monitoring after aneurysmal subarachnoid hemorrhage: can we predict delayed neurological deficits?” World Neurosurgery, vol. 73, no. 5, pp. 465–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Zweifel, G. Castellani, M. Czosnyka et al., “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke, vol. 41, no. 9, pp. 1963–1968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Yokose, K. Sakatani, Y. Murata et al., “Bedside monitoring of cerebral blood oxygenation and hemodynamics after aneurysmal subarachnoid hemorrhage by quantitative time-resolved near-infrared spectroscopy,” World Neurosurgery, vol. 73, no. 5, pp. 508–513, 2010. View at Publisher · View at Google Scholar · View at Scopus